A Self-Assembling Influenza Nanoparticle Vaccine Elicit Broad and Potent Neutralizing Antibodies

Chih-Jen Wei, Ph.D.
Synthetic and Immune Biology
Bio-Innovation, Global Bio-Therapeutics
Sanofi

April 2, 2014
How Can We Improve Vaccine Against Flu?

Rapid and reliable production
• Alternative production systems instead of embryonated eggs
• Avoid adaptation and replication of real virus

Improve vaccine efficacy to provide protection for longer period
• Focus immune responses to the conserved sites
• Enhance magnitude of immune responses

HA is the major target of broadly neutralizing antibodies

Hypothesis:
Re-orient HA on a new platform may increase accessibility to the conserved stem Ab epitopes.
• Increase stem-directed neutralizing Ab titer and improve breadth of neutralization

400-500 HA spikes/virion

CDC
Broadly Neutralizing Abs against Influenza

Receptor Binding Site
Mimics sialic acid ligand
Subtype specific neutralization

Conserved Stem
Prevents post-fusion conformation
Group specific neutralization
Aim

- Structure-based approach to develop a novel platform to present conserved HA epitopes to the immune system
 - Trimeric structure integrity
 - Symmetrically ordered repetitive array (multivalency)
 - Optimized space between conserved immunogenic sites
Ferritin nanoparticle

Ferritin:
- Found in most organisms as an iron storage protein
- Forms spherical particle with octahedral symmetry consisting of 24 subunits
- Made of ~20 kDa protein
- Self-assembly capability

Ferritins have been engineered as:
- Biomedical imaging agent
- Semiconductor/bionanobattery
- Potential vaccine platform
Structure-Based Design of HA-Ferritin Nanoparticle

Helicobacter pylori ferritin

3-fold axis

Ferritin

HA

Asp5

Outside

Inside

N=24

28 Å

Nature. 2013, 499:102-6
Self-Assembly of HA-Ferritin Nanoparticles

A/New Caledonia/20/1999

HA-Ferritin

HA1 | HA2 | Ferritin

Gel filtration FPLC

Dynamic Light Scattering

SDS-PAGE

Nature. 2013, 499:102-6
HA Spikes on HA-Ferritin Nanoparticle Visualized by EM

Nature. 2013, 499:102-6
Antigenic Characterization of HA-Ferritin Nanoparticles

Ab specificity:

Head

- HA-Ferritin np
- TIV
- Trimer

A_450

Concentration (log_{10} \mu g ml^{-1})

Stem

- HA-Ferritin np
- TIV
- Trimer

Ferritin np

Nature. 2013, 499:102-6
Enhanced Immune Responses in HA-Ferritin-Immunized Mice

Nature. 2013, 499:102-6
Protective Immunity Induced in Ferrets Immunized with HA-Ferritin Nanoparticle

Nature. 2013, 499:102-6
Elicitation of Anti-Stem Neutralizing Abs in Immune Sera

Specificity: Stem

WT

Δstem

ΔStem

HA

45Nψ

Immune sera

Absorption

Test binding to intact HA

Nature. 2013, 499:102-6
Elicitation of Anti-RBS Neutralizing Abs in Immune Sera

Specificity: RBS

WT
ΔRBS

ΔRBS HA

Immune sera
Absorption

Test binding to intact HA

Nature. 2013, 499:102-6
Trivalent HA-Ferritin Nanoparticle Vaccine

A/California/04/09 (H1)
H1 HA-Ferritin np

A/Perth/16/09 (H3)
H3 HA-Ferritin np

B/Florida/04/06 (B)
B HA-Ferritin np

Immunization: Neut virus:
Trivalent HA-Ferritin Nanoparticles

Neut virus:
H1N1 Mexico 09
H3N2 Perth 09
B Florida 06
Summary

- We have successfully developed a self-assembled HA-ferritin nanoparticle which displays properly folded, fully glycosylated, functional trimeric HA on its surface.
- Immunization of HA-ferritin induced higher HAI and neutralization titers than licensed TIV in both mice and ferrets: symmetrically ordered, repetitive arrays of HA might contribute to this enhanced immunogenicity.
- Breadth of neutralization was improved in HA-ferritin-immune sera, and it provided better protective immune responses against an unmatched H1N1 virus challenge in ferrets.
- Neutralizing Abs directed to two distinct conserved sites were elicited by HA-ferritin: anti-stem and anti-RBS Abs.
- HA-ferritins could also be made for H3 and Type B viruses.
- The engineered HA “stem only” (HA SS) expressed satisfied expression and antigenic criteria: trimers with antigenicity comparable to full-length HA. It was engaged membrane-bound stem-directed CR6261 IgM.
- HA SS-ferritin fusion formed nanoparticles and the immunogenicity of this novel immunogen is currently being evaluated.
Acknowledgements

Virology Lab, VRC, NIAID, NIH
Gary Nabel (now at Sanofi)
Masaru Kanekiyo
Patrick McTamney (now at MedImmune)
Jeffrey Boyington
Hadi Yassine
Daniel Lingwood
James Whittle
Wing-Pui Kong
Lingshu Wang

Bioqual, Inc.
Hanne Andersen

Lab Animal Medicine, VRC
Srinivas Rao
Alida Ault
Carmelo Chiedi
Marlon Dillon
John-Paul Todd
Alyse Zajac

NCI-Frederick/SAIC
Ulrich Baxa
Kunio Nagashima
Adam Harned
Enhanced Immune Responses in HA-Ferritin-Immunized Mice

IC$_{50}$ titers

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TIV</td>
<td><50</td>
<td><100</td>
<td><100</td>
<td>1654</td>
<td>4215</td>
<td>677</td>
<td>311</td>
</tr>
<tr>
<td>HA-Ferritin np</td>
<td><50</td>
<td>210</td>
<td>114</td>
<td>>6400</td>
<td>>12800</td>
<td>>3200</td>
<td>4286</td>
</tr>
</tbody>
</table>

Nature. 2013, 499:102-6
Cellular and Humoral Immune Responses against *Helicobacter pylori* and Mouse Ferritins
Elicitation of Anti-Stem Neutralizing Abs in Immune Sera

Nature. 2013, 499:102-6
Elicitation of Anti-RBS Neutralizing Abs in Immune Sera

Virus: 1934 PR8 2007 Bris

Specificity: RBS Neut virus: 2007 Bris

HAI

Absorption

Test binding to intact HA

Immune sera

ΔRBS HA

190N

ΔRBS HA

Specificity: RBS

Neutral virus: 2007 Bris

Endpoint dilution (log2)

Neut (%)

Immunogen: Control TIV HA-Ferritin np

Competitor: Control Wild type ΔRBS

100

80

60

40

20

10

2

1

1

10

10

10

10

10

10

10

10

10

10