Intestinal homeostasis and its breakdown in IBD

Fiona Powrie

Translational Gastroenterology Unit
Experimental Medicine Division
Nuffield Dept of Clinical Medicine
University of Oxford

fiona.powrie@path.ox.ac.uk

Fondation Merieux
10/6/13
Maladaptations between the intestinal microbiota and innate and adaptive immune response promote IBD

- Microbiota changes
- Intestinal barrier function
- Anti-microbial defense
- Balance between effector and regulatory T cell responses

Adapted from Xavier Nature 2011
Deficiencies in *H. hepaticus*-induced IL-10 leads to IL-23-mediated colitis

Kullberg et al., JEM 2003; Hue et al., JEM 2006

IL-23 dependent colitis
IL-17-independent
The IL-23/Th17 Pathway-distinct mediators may promote particular tissue responses.

Host defence
- AMP’s
- Barrier function, repair

Inflammation
- GWAS: AS, CD, UC, Psoriasis
- Models: colitis, joint, skin, uveitis, CNS

Naïve T-cell
- IL-1, IL-6
- TGF-β, IL-23

Th17 cell
- (CD8, unconv T cells, ILC)
- IL-21
- IFN-γ
- TNF-α

IL23R
- RORgt
- IL-23
- IL-22
- IL-17A
- IL-17F
- GM-CSF

Myeloid Cells
- APCs

Stromal Cells
- Inflammation

Barrier function, repair
IL-23 acts directly on T cells to promote colitis

Ahern et al., Immunity 2010
Colitis is characterised by high numbers of mature and myeloid progenitor cells—role of GM-CSF?

Colonic CD4+

Colonic CD4+ T cells Griseri et al., Immunity 2012

Marginal CFU activity in the colon ~10X increased during colitis

control
colitis

N° colonic GMP

GM-CSF

IL-17A

CD4+ CD45RBhi

RAG-/-

GR1

CD11b

IL-17A

CFU-GM

control
colitic

Marginal CFU activity in the colon ~10X increased during colitis

T Griseri et al., Immunity 2012
GM-CSF promotes chronic intestinal inflammation

colitis

![Graph showing relationship between treatment and colitis](image)

\[p=0.009 \]

colonic neutrophils

\[\text{N}^0 \text{ CD11b}^+ \text{Gr}1^{hi} \text{ cells} \]

\[p=0.05 \]

\[(x10^4 \text{ cells}) \]

GMP

\[\text{N}^0 \text{ GMP} \]

\[p=0.02 \]

\[(x10^3 \text{ cells}) \]

\[\text{RB}^{hi} + \text{isotype control} \]

\[\text{RB}^{hi} + \text{anti-GM-CSF} \]

Griseri et al., Immunity 2012
Eosinophils and the gastrointestinal tract

- Eosinophils are abundant throughout the GI tract
- Present in germ free mice
- Contributors to the immune response
- Can mediate tissue damage
- Increased in acute colitis
- Increased activation in IBD

Rosenberg HF Nat Rev Imm 2013
GM-CSF promotes dysregulated myelopoiesis: Colitogenic role for tissue toxic eosinophils

Stem cells

HSC

IFN-γ

GM-CSF

BONE MARROW

CLP

MEP

CLP

MEP

EMH

GMP

GMP

Eosinophils

IL-23

Th1/Th17

IFN-γ

IL-17

GM-CSF

Neutrophils

Inflammatory monocytes

microbiota

damage

Lamina propria

Blood

Haematopoiesis

Chronic Intestinal Inflammation
IL-23-driven innate colitis—genetically controlled response to Hh with hallmarks of type 17 response

Helicobacter hepaticus: innate model

129SvEv RAG⁻/⁻

H. hep

Colitis and colon cancer in 129SvEv C57Bl6 resistant (mapped to Chr3)

α-IL-23
α-IL-17A
α-IFNγ

Histopathology Score

Hue et al., JEM 2006; Buonocore et al., Nature 2010; Boulard JEM 2012; Szabady unpublished
IL23-responsive innate lymphoid cells

- IL23 induces Th17/Th1 cytokines by a novel population of innate lymphoid cells

Buonocore et al., *Nature* 2010
IL-23 drives innate colitis through promoting IFN-\(\gamma\) and IL-17 by innate lymphoid cells

INFLAMMATION

Innate cell involved in the tissue inflammatory response

Respond to early microbially-induced IL-23

ROR\(\gamma\)t-dependent cytokine module

May be involved in early amplification of the inflammatory response

Increased Type 17 ILC in CD lesions (Geremia et al., JEM 2011)
Type 3 ILC

Required for lymphoid organogenesis
Dependent on RORγt

Lti-like cells produce IL-17 and IL-22 in response to IL-23-host protective in CR infection

IL-22 producing ILC
Bears NK markers
Mediates anti-microbial immunity in intestine

IL-17, IL-22 and IFN-gamma producing ILC
Promote intestinal inflammation

H. Hepaticus-induced invasive colorectal cancer

Helicobacter hepaticus: innate model

129SvEv
RAG^{−/−}

H. hep

6 w AOM

5 m analysis

Highest tumor grade

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>No CRC</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Low-grade dysplasia</td>
<td>75%</td>
<td>(n=12)</td>
</tr>
<tr>
<td>High-grade dysplasia</td>
<td>6%</td>
<td>(n=1)</td>
</tr>
<tr>
<td>CRC</td>
<td>19%</td>
<td>(n=3)</td>
</tr>
<tr>
<td>CRC</td>
<td>64%</td>
<td>(n=9)</td>
</tr>
</tbody>
</table>

129 CRC
C3B normal

Boulard et al., JEM 2012
Changes in the ILC compartment during *H. hepaticus* induced cancer

Hh+AOM

E-cadherin RORγ DAPI IL-7Rα DAPI

ILC composition

<table>
<thead>
<tr>
<th></th>
<th>cILC</th>
<th>Nkp46⁺</th>
<th>LTI</th>
</tr>
</thead>
<tbody>
<tr>
<td>uninf.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hh+AOM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ILC number

<table>
<thead>
<tr>
<th></th>
<th>cILC</th>
<th>Nkp46⁺</th>
<th>LTI</th>
</tr>
</thead>
<tbody>
<tr>
<td>uninf.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hh+AOM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anti-Thy-1 tx reverses established inflammation and cancerous changes.
IL-22 as a pro-tumorigenic factor?

- Survival and growth factor produced by Th22, Nk-22, ILC, LTi
- **IL-22R** expression restricted to epithelium
- Signals through **Stat3**, which is involved in other CAC models
- **Polymorphisms in IL-22** associated with a 1.46-fold increased risk for development of CRC (Thompson et al. *Cancer Causes Control* 2010)
ILC produced IL-22 is acting on the epithelium to promote proliferation

1-3d 6-10w 20w

\[\text{ILC produced IL-22 is acting on the epithelium to promote proliferation} \]

\[\frac{1}{3} + \frac{1}{6} - 10w \]

\[\text{CRC} \quad \text{Ab tx} \]

\[\frac{Hh}{AOM} \]

\[\text{Hh} + \text{AOM} \]

\[\text{+ iso} \quad \text{+ anti- IL-22} \]

\[\text{pStat3 Y705} \]

\[\text{Cyclin D1} \]

\[\text{+ iso} \quad \text{+ anti- IL-22} \]

\[\text{+ anti- IL-17} \quad \text{+ anti- IL-6} \]

\[\text{+ iso} \quad \text{+ anti- IL-22} \]

\[\text{live, CD45+, lin-, Thy1hi} \]

\[\text{live, CD45+, lin-, Thy1hi} \]

\[\text{live, CD45+, lin-, Thy1hi} \]
IL-22 sustains colon cancer

Kirchberger et al., JEM 2013
ILC promote colitis and sustain colon cancer through IL-22 production

Genetic control of bacteria-driven colon cancer (1.5Mb region on Chr 3—also acts in other models)

Functions in haematopietic cells to control early innate response to *H. Hepaticus*

DN 17+22+ Thy1+ ILC accumulate in CRC and mediate a functional role in perpetuation of the disease

IL-22 is required for pStat3 in IEC

Neutralisation of IL-22 ameliorates established cancer-cell extrinsic control of neoplastic cells

IL-22+ T and non-T cells in human CRC—novel therapeutic target

(Flavell, Nature 2012; Karin Nature 2012)
Inflammatory cytokines contribute to the initiation and perpetuation of bacteria-driven colon cancer

- Is there an IL-22 signature assoc with spontaneous CRC?
- Mutations in CAC?
- Is dysbiosia of the microbiota a contributor to Hh-driven CAC?
Collaborators:
D. Littman (NYU)
Dan Cua (Merck)
Brent McKenzie (CSL)
M. Oukka (Benaroya Inst)
Paul Crocker (Dundee)

CRUK

wellcome trust

BBSRC
biodiscovery for the future

Fondation Louis-jeantet

Oxford
Translational Gastroenterology Unit

Powrie Lab

Chris Scheiring
Matt Shale
Scott Steward Tharpe
Stephanie Kirchberger
Olivier Boulard
Claire Pearson
Allesandra Geremia
Carolina Arancibia
Tibo Griseri
Thomas Krausgruber

Philip Ahern
Sophia Buonocore

Kevin Maloy (SWDSP)
Margherita Coccia

Simon Travis (TGU)
Holm Uhlig (TGU)
Daniel Royston (Pathologist)