Delivery Dystems in ETEC vaccination: Complexity, Failure, Success

Cox Eric

Laboratory of Immunology, Fac. Vet. Med., UGent, Belgium

Eric.Cox@Ugent.be
Worldwide deaths annually from mucosal infections

- Acute respiratory infections (4 million)
- Diarrheal diseases (1.8 million)
- Tuberculosis (1.5 million)
- HIV (2.9 million)
- Measles (600,000)
- Hepatitis B (103,000*)
- Whooping cough (294,000)
- Roundworm and hookworm (12,000)

Figure 11-2 Immunobiology, 7ed. (© Garland Science 2008)
Vaccines

Replicating (alive)
- Avirulent strains
 - E.g. no toxines
- Attenuated strains
- Recombinant (living subunits)
 - recombinant vectors

Non-replicating (dead)
To be targeted?
- Particles
 - Microparticles
 - Nanoparticles
- Soluble proteins
 - anatoxins
 - envelope proteins
- Produced proteins (dead subunits)
Human oral vaccines

Polio
- Live attenuated vaccine (OPV)
 Oral Many Producents

Cholera
- Cholera toxin B subunit (CTB) + inactivated *V. cholerae* O1
 Oral Dukoral (Crucell)
- Inactivated *V. cholerae*, no CTB
 Oral Shanchol (Santa Biotechnics)
- CVD 103.HgR live recombinant *V. cholerae* O1 strain lacking CTA
 Oral Orochol (Crucell)

Typhoid
- Ty21a live attenuated vaccine
 Oral Vivotif (Crucell)

Rotavirus
- Live attenuated monovalent human rotavirus strain
 Oral RotaRix (GlaxoSmithKline)
- Multivalent human-animal reassortant Strain
 Oral RotaTeq (Merck)
Protection small intestine

Virulence
- Too attenuated => no danger
- Too virulent => disease

ROUTE
- Parenteral ↔ Mucosal
- Oral preferred route
- Not mucosa

Can immunomodulation change this?

VACCINE
- Alive ↔ Dead

Translation from mice?

AGE
- Passive ↔ Active

Immune status
- Colostral/placental passive Immunity
- Lactogenic Immunity

Passive immunity

Active immunity

Intestinal Mucosa
FOLLICLE-ASSOCIATED EPITHELIALM

Enteropathogens (enterotoxigenic *E. coli*)
Particulated antigens

Immunity

T helper cells

MUCOSA

Non-replicating soluble antigens

Epithelium

IgA production

Dentritic cells

Immature antigen-presenting cells

Draining lymph node

Oral tolerance

Mucosa-associated lymphoid tissue

Danger

Epithelium
Oral vaccination remains difficult

Follicle-associated epithelium

M-cells
Particulated antigen

Pathogen
Live vaccine

Enterocytes
Few soluble antigens
Virulence factors

Enterocytes

M-cells
Particulated antigen

Mature DC

Gut-associated lymphoid tissue

Immunity

Mature DC

Lamina propria
Mesenteric Lnd
Oral vaccination remains difficult.

Follicle-associated epithelium

- M-cells
 - Particulated antigen
 - e.g. Killed Vibrio cholerae

Enterocytes

- Soluble antigens
 - Virulence factors
 - e.g. CT, LT, F4

Selection of antigens

- Antigens remain immunogenic (production process)
- Reach FAE (target)
- Transcytose by M cells (target?)
- Danger signals (adjuvant?)
- Uptake by DCs
- Maturation of DCs

Pathogen

- Live vaccine

• Antigens retain immunogenic (protection)
• Reach enterocytes (target?)
• Transcytose by enterocytes (target?)
• Danger signals (adjuvant?)
• Uptake by DCs
• Maturation of DCs

Immunity
Pigs

- Diarrhoea = 11% of all post-weaning mortality
- ± 10 million piglets die annually worldwide
- 50% is caused by enterotoxigenic E. coli

Enterotoxigenic Escherichia coli (ETEC) in piglets

- **Fimbriae** (F4, F5, F6, F41, F18)
- **Colonisation**
- **Enterotoxins** (LT, STa, STb)

Neonatal diarrhoea

Postweaning diarrhoea
1. **Oral Immunisation** with purified F4 (and dissolved in PBS)

2. **Infection challenge with** F4+ETEC

3. **Faecal excretion of F4+ ETEC**
The mucosal response is protective

- **IgA**
 - PBS: Flat line
 - F4-immunized: Steep increase to high levels

- **IgG**
 - PBS: Flat line
 - F4-immunized: Steep increase to high levels

- **IgM**
 - PBS: Flat line
 - F4-immunized: Steep increase to high levels

ETEC excretion after infection

- **Days post infection**
 - 2: 0
 - 3: 15
 - 4: 3
 - 5: 3
 - 6: 0

F4 + ETEC

- **Oral F4**
 - No boost after infection
 - No faecal excretion!

- **F4**
 - Mucosal response is protective

=> **Oral F4 induces protective mucosal response!**

Van den Broeck et al., 1999. Infect Imm
Binding and uptake of F4 fimbriae

Ligated loops injected with F4

FLUOS-labeled F4

Snoeck et al., 2008. Vet Imm Immunopath.

F4 fimbriae bind to **Aminopeptidase N (APN)**

Blotting of brush border proteins and staining with F4
Uptake of APN-specific antibodies by enterocytes in vivo (intestinal loops)

IgA response in pigs against rabbit IgG

Immunization with 1mg anti-APN rabbit IgG ± 50 µg CT of 26 days old piglets seronegative for anti-rabbit IgG

Rasschaert et al., 2012. Mucosal Immunology
Conclusions

- Targeting soluble antigens towards a receptor on enterocytes can lead to a protective intestinal mucosal immune response if:
 - Antigen is stable
 - Binding to the receptor results in transcytosis
 - There is activation of DCs
- Targeting aminopeptidase N is a promising strategy to induce an intestinal IgA response against soluble antigens.
Protective immunity at weaning:

- Encapsulation to protect F4 antigen
- Digestion
- Denaturation
- Inhibition by milk glycoproteins and sugars

Gantrez nanoparticles

poly(methylvinylether-co-maleic anhydride)

\[\approx 100 \text{ nm} \]

Forms covalent, ionic and H-bounds with the F4

F4 only released by hydrolysis of the polymer

Gantrez nanoparticles (gNP) oral in weaned pigs

F4-specific Ab response

- **Serum IgA**
 - F4
 - g(F4) NP
 - F4+gNP
 - gNP

- **Serum IgG**
 - F4
 - g(F4) NP
 - F4+gNP
 - gNP

Ab response: gNP < F4 < (F4)NP < F4+NP

Excretion: F4+ NP < F4 < gNP < (F4)NP

best effect with empty NP

⇒ **Adjuvant effect mainly caused by polymer properties** ↔ **encapsulation!!**

Targeting to enterocytes

<table>
<thead>
<tr>
<th>Positive</th>
<th>Weak positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNA-I, -II, -III, -IV</td>
<td>Jacalin</td>
<td>GNA</td>
</tr>
<tr>
<td>SRA</td>
<td>STL</td>
<td>NPA</td>
</tr>
<tr>
<td>UEA-II</td>
<td>UDA</td>
<td>HHA</td>
</tr>
<tr>
<td>SBA</td>
<td>Bauhinia</td>
<td>ASA</td>
</tr>
<tr>
<td>MAA</td>
<td>VAA</td>
<td></td>
</tr>
<tr>
<td>WGA</td>
<td></td>
<td>Morniga G</td>
</tr>
<tr>
<td>DSL</td>
<td></td>
<td>Heltuba</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SJA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WFA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PNA</td>
</tr>
</tbody>
</table>

WGA: Wheat germ agglutinin binds N-acetyl-glucosamine (EGFR)
Protection against infection with F4+E. coli

Faecal excretion of F4+ ETEC

Addition of gNP: excretion reduced by at least 3 days!!!; WGA no effect
Conclusions

- Particles are not very successful in vaccine trials in large animals.
- There is no optimal targeting
- Live attenuated vaccines are still the most successful oral vaccines.
Thanks to all these!

Acknowledgements

Former PhD students
- dr. Frank Verdonck (Ablynx)
- dr. Petra Tiels (VIB-UGent)
- dr. Yves Van der Stede (CODA)
- dr. Edith Stuyven (Ablynx)
- dr. Veerle Snoeck (Ablynx)
- Prof. Dr. Wim Van den Broeck (UGent)

Lab of Immunology (UGent)
- Prof dr. Bruno Goddeeris (Lab Immuno/KUL)
- Prof dr. Herman Favoreel
- dr. Vesna Melkebeek
- dr. Bert Devriendt
- dr. Annelies Coddens

Lab of Pharmaceutical Biotechnology
- Prof Dr. Dieter Deforce

Financial support

![Logos of financial supporters]