Immunomodulation During Herpesvirus Latency

Erik S. Barton
Purdue University
West Lafayette, Indiana, USA
The Human Herpesviruses: Lifelong Latency and Recurrent Disease

• Alpha:
 – HSV1: recurrent cold sores
 – HSV2: recurrent genital sores
 – VZV: chicken pox and shingles

• Beta:
 – CMV: severe birth defects
 – HHV6 & HHV7: rash in newborns

• Gamma:
 – EBV: mononucleosis, lymphoma
 – KSHV: Kaposi’s sarcoma
Stages of Infection with Herpesviruses

- **Acute Infection**
 - Viral Replication
 - Phase of immune response: Innate→Adaptive Response
 - Effect on host: Mild or no illness

- **Latent Infection**
 - T cells, B cells
 - Phase of immune response: Resting Memory
 - Effect on host: Presumed Inconsequential

Limit of detection
Stages of Infection with Herpesviruses

Viral Replication

Acute Infection
- Time
- Limit of detection
- T cells, B cells
- Chronic lymphocyte activation
- Reactivation attempts detected and inhibited

Latent Infection
- Phase of immune response:
- Innate→Adaptive Response
- Effect on host:
- Mild or no illness

Effect on host:

Phase of immune response:

Innate→Adaptive Response
Stages of Infection with Herpesviruses

- **Acute Infection**: Mild or no illness
- **Latent Infection**: T cells, B cells
- **Reactivation**: Chronic lymphocyte activation

- **Limit of detection**: Viral Replication
- **Time**:
 - Innate → Adaptive Response
 - Chronic lymphocyte activation
 - Reactivation attempts detected and inhibited

- **Phase of immune response:**
 - Innate Response
 - Adaptive Response

- **Effect on host:**
 - Mild or no illness
 - Severe Disease

- **Immune Compromise**:
Stages of Infection with Herpesviruses

Viral Replication

- **Acute Infection**
 - Innate → Adaptive Response
 - Effect on host: Mild or no illness

- **Latent Infection**
 - Chronic lymphocyte activation
 - Reactivation attempts detected and inhibited

Phase of immune response:

- **Limit of detection**

T cells, B cells

Time

Consequences for host response to other antigens?

Soluble inflammatory mediators produced
Immune Modulation During Herpesvirus Latency

Latent infection
\[\downarrow \]
Chronic, low-level viral antigen presentation
\[\downarrow \]
Inflammatory response controls reactivation

Detrimental?
- Tissue remodeling/fibrosis
- Exacerbation of pre-existing autoimmunity
- Proliferation, mutagenesis, and cellular transformation
Beneficial?
- “Cross-protection” from heterologous infections
- Enhanced immune surveillance of pre-cancerous cells
- Prevention of allergy or autoimmunity: the “hygeine hypothesis”

Detrimental?
- Tissue remodeling/fibrosis
- Exacerbation of pre-existing autoimmunity
- Proliferation, mutagenesis, and cellular transformation

Latent infection
↓
Chronic, low-level viral antigen presentation
↓
Inflammatory response controls reactivation
Murine Herpesviruses Models of Latent Infection

- **β**: Murine cytomegalovirus (MCMV)
 - related to human CMV
- **γ**: Murine gammaherpesvirus 68 (MHV68, also γHV68)
 - related to EBV and KSHV

- Acute infection followed by lifelong latency
- Routes of spread, tropism, and pathogenesis resemble those of human viruses
Does Latent Herpesvirus Infection Protect the Host from Lethal Bacterial Infection?

MHV68 i.n.

Listeria monocytogenes, i.p.

MHV68: 1 week pi

MHV68: 4 weeks pi

MHV68: 12 weeks pi

Survival

p<0.0001

p=0.0038
Does Latent Herpesvirus Infection Protect the Host from Lethal Bacterial Infection?

MHV68 i.n.

Listeria monocytogenes, i.p.

MHV68: 1 week pi 4 weeks pi 12 weeks pi

Is latency induced cross-protection antigen specific?
Latent Herpesvirus Infection Protects the Host from Lethal Bacterial Infection: *Yersinia pestis*

- **Pneumonic plague model**
- **Bubonic plague model**

- *Herpesvirus latency induces broad antibacterial immunity*
- *Not antigen specific: innate resistance*
- *Mechanism?*
Latent MHV68 Infection Is Characterized by Elevated Serum Levels of IFNγ and TNFα

- Released by activated lymphocytes
- Control herpesvirus replication noncytolytically
- Activate phagocytes during bacterial infection

* $p < 0.0002$
Latent MHV68 Infection Is Associated with Activated Macrophages

Activated Macrophages
MHC-II upregulated 100-fold
Directly bactericidal \textit{ex vivo}
Latent MHV68 Infection Is Associated with Activated Macrophages

Mock

Latent (day 28)

Is latency induced cross-protection a general consequence of herpesvirus latency?

Activated Macrophages
MHC-II upregulated 100-fold
Directly bactericidal \textit{ex vivo}
Latent Infection with MHV68 or MCMV Protects the Host from *Listeria* Infection

MCMV latency also induces MHC-II upregulation on peritoneal macrophages: similar mechanism?
Stages of Infection with Herpesviruses

- **Acute Infection**
 - Viral Replication
 - T cells, B cells
 - Limit of detection
 - Innate to Adaptive Response: Mild or no illness

- **Latent Infection**
 - Chronic lymphocyte activation
 - Reactivation attempts detected and inhibited
 - Immune Compromise: Severe Disease

- **Chronic macrophage activation**

- **Cross-protection from bacterial challenge**
Stages of Infection with Herpesviruses

Viral Replication

Time

Limit of detection

Acute Infection

Latent Infection

T cells, B cells

Phases of immune response:

Innate → Adaptive Response

Chronic lymphocyte activation

Immune Compromise

Effect on host:

Mild or no illness

Reactivation attempts detected and inhibited

Severe Disease

Other enhancements of innate immunity during latency?
Natural Killer Cells Kill Infected and Transformed Cells

• Innate cytotoxic lymphocytes
• recognize stressed, infected, transformed cells
 • downregulated MHC-I (“missing self”)
 • upregulated stress-induced ligands (“altered self”)
• kill via cytotoxic granules (perforin, granzyme)
• secrete inflammatory cytokines (IFNγ)
• critical role for control of acute MCMV infection
 – not required for control of acute MHV68 infection
 – role in latent herpesvirus infection unclear
• mediate resistance to tumorigenesis in mice
• potential role in human antiviral immunity and tumor surveillance
Human, but not Murine, NK Cells Mediate Efficient Cytotoxicity Directly *ex vivo*

Does latent herpesvirus infection arm NK cells *in vivo*?
Latent MHV68 Increases Granzyme B in NK Cells

- harvest PEC
- gate on CD3·NK1.1+
- measure GzmB (IC stain)

MHV68 i.n. ~28 d

- enhanced IFNγ secretion following IL-12/IL-15 stimulation
- enhanced cytotoxicity in vitro

Mock
MHV68

% GzmB+ NK Cells

DW355, 31dpi, 10 mice/group
Latency Enhances Survival Following Challenge with a T Cell Lymphoma

- Protection requires NK cells

MHV68 i.n. ➔ 28 d ➔ Challenge with RMA-S i.p. ➔ Survival

DW338/B/C, 20 mice/grp, log rank p<0.0001
Stages of Infection with Herpesviruses

- **Acute Infection**
 - Viral Replication
 - T cells, B cells
 - Limit of detection

- **Latent Infection**
 - Chronic lymphocyte activation
 - Reactivation attempts detected and inhibited

Phase of immune response:
- Innate → Adaptive Response

Effect on host:
- Mild or no illness
- Severe Disease

Immune Compromise
- Protection from lethal tumor challenge

NK cell arming *in vivo*
Summary: Enhanced Innate Immunity During Herpesvirus Latency

• Latent β- and γ-herpesvirus infection in mice confers striking cross-protection from lethal bacterial infection
 – requires latent infection, lasts ~six months
 – is associated with systemic macrophage activation
 – is functional against diverse bacterial, viral, and protozoan pathogens

• MHV68 latency promotes arming of NK cells in vivo.
 – associated with increased survival in a lymphoma transfer model
 – may explain the difference between NK cell function in humans and pathogen-free mice
 – role for herpesvirus in resistance to tumorigenesis?
Herpesviruses as Benevogens?

Innate resistance to infection, neoplasia

Age (years)

0 1 2 3 4 5

HHV6
HCMV
EBV
HHV7

Latency Induced Protection

Basal innate immunity:
- neonatal humans
- pathogen free mice

Innate immunity in neonatal humans and pathogen-free mice.
Significance

• Herpesvirus latency in mice upregulates the setpoint of innate immunity

• Herpesvirus latency may represent a form of co-evolved, mutualistic symbiosis
 – universal vaccination against herpesviruses may alter this balance and deprive the host immune system of critical regulatory signals

• The “normal” human immune system is shaped by chronic viral infections that do not cause clinically evident disease and are absent in pathogen-free mice.
 – There are no herpesvirus-free humans
 – A comprehensive understanding of human immunology may require animal models infected with these viral symbionts
Acknowledgements

Laboratory of Skip Virgin

• Doug White
• The Virgin Lab

Washington University Collaborators

• Yersinia: Virginia Miller & lab
• Listeria: Emil Unanue & lab
• NK arming: Todd Fehniger & Tim Ley

Purdue Collaborators

• Rebecca Doerge
• Douglas LaCount

Funding

• Cancer Research Institute postdoctoral fellowship (Barton)
• NIH research and institutional training grants
• American Cancer Society IRG
• Abbott Scholar Award

The Barton Lab, Purdue University
Biological Sciences