Argument for combination immunotherapies in therapeutic cancer vaccine development

Thomas F. Gajewski, M.D., Ph.D.

Associate Professor, Departments of Pathology and Medicine
Program Leader, Immunology and Cancer Program of the University of Chicago Cancer Research Center
Results of clinical studies of immunization with melanoma antigen peptides and IL-12

- Clinical response rate 10% (+ ~20% stable/mixed)
 - Better than zero
 - Not as high as hoped based on preclinical studies
- T cell responses (usually modest magnitude) induced in the majority of patients
- Some patients had a high T cell response to melanoma antigens even pre-treatment (up to 1% of CD8s) ➔ spontaneous immunity
- **Pivotal question: why does high T cell response not always lead to tumor regression?**
 - Quantitative deficiency (magnitude still not high enough)
 - Qualitative limitations (TCR avidity, phenotypic subtleties)
 - **Downstream resistance mechanisms at the level of tumor microenvironment**

Int. J. Can. 1999
J. Clin. Oncol. 2003
Anti-tumor immune responses: Taking into account the effector phase

Lymph node (Priming phase)

- APC
- nCD8
- IL-2
- eCD8

Vaccine

Endogenous

Lymphatic

Blood

Tumor microenvironment (Effector phase)

- APC
- eCD8
- Chemokines
- IFN-γ
- Granzymes
- perforin

Inhibitory mechanisms
Can we profile tumor microenvironment and identify correlates with clinical outcome?

Phase II study with 4 peptide vaccine + IL-12

- 19 HLA-A2+ patients with metastatic melanoma
- All vaccinated with 4 peptides (MelanA, NA17, gp100, MAGE3) pulsed onto PBMC + rhIL12 q 3 weeks
- Patients had pre-treatment biopsy to prepare RNA for gene array analysis
- Clinically, 1 patient had a CR, 1 PR, and 4 had prolonged disease stabilization (>6 months)
- Affymetrix gene array on pretreatment samples:
 - U133A chips utilized, data were normalized
 - Supervised hierarchical clustering done comparing patients with SD or better versus patients with PD
 - Looking for genes differentially expressed 2-fold or greater
Affymetrix gene array analysis of pre-treatment biopsies from patients on melanoma vaccine sorted by clinical outcome

Represents only 7 genes:
- 4 upregulated
- 3 downregulated

6 mos SD or better
Tumors from favorable clinical outcome patients express higher levels of TCRα, CXCL9, and CCL21
Expression of a subset of chemokine genes is associated with presence of CD8 transcripts

CD8β
CCL2
CCL4
CCL5
CXCL9
CXCL10
CCL19
CCL21
Superior recruitment of human CD8$^+$ effector T cells in NOD/scid mice bearing “chemokine-high” M537 melanomas

Harlin et al, Cancer Research, 2009
Why are melanomas that do attract CD8\(^+\) T cell not rejected spontaneously?

- Presence of immune inhibitory mechanisms:
 - IDO
 - PD-L1/PD-1
 - Tregs
 - T cell anergy

- Lack of migration
Co-expression of IDO, PD-L1, and FoxP3 transcripts in individual tumors

Note: these are more abundant in metastases that contain CD8+ T cells

Immunol. Rev. 2006
Strategies to uncouple immune inhibitory mechanisms for clinical translation

1. Promote increased migration into tumor sites
 - Chemokines, innate immune factors (e.g. type I IFNs), TLR ligands
 - LIGHT (Yu et al. J. Immunol. 2007)

2. Uncouple negative regulation
 - 1-methyltryptophan (RAID program); other inhibitors
 - Blockade of PD-L1/PD-1 interactions (Blank et al, Can Res 2004)
 - Anti-PD-1 or PD-L1 mAb (Medarex)
 - Depletion of CD4+CD25+FoxP3+ Tregs (Kline et al, CCR 2008)
 - Ontak (denileukin diftitox: IL-2/DT fusion; Daclizumab)
 - Ex vivo bead depletion of CD25+ cells from T cell product
 - Homeostatic cytokine-driven proliferation (lymphopenic recipient)
 - Inhibition of anergy factors (e.g. DGK-α)
 - **Combinations of negative regulatory pathway blockade**
 - Synergy between Treg depletion and anergy reversal with homeostatic proliferation (Kline et al, CCR 2008)
Intratumoral LIGHT adenovirus in B16 melanoma: Promotes chemokine production, CD8+ T cell recruitment, primary tumor control, and rejection of non-injected distant metastases

Yu et al, J. Immunol. 2007
1-methyltryptophan reverses immunosuppression by IDO and improves tumor control in vivo

PD-1^−/− TCR Tg T cells are superior at tumor rejection in vivo

Blank et al, Cancer Research, 2004
DGK as a drugable inhibitor of T cell activation in the anergic state

Zha et al., Nature Immunol. 2006
A pharmacologic inhibitor of DGK recovers IL-2 production by anergic T cells

Implies that it may be possible to develop small molecule immunopotentiating drugs to improve T cell function in the context of cancer and chronic infections
Anergic 2C TCR Tg T cells reject tumors after homeostatic proliferation in RAG2^{−/−} hosts

Brown et al., J. Immunol., 2006
Uncoupling multiple immune suppressive mechanisms: Combined Treg depletion and anergy reversal supports rejection of B16 melanoma and leads to vitiligo

Comprehensive view of levels at which a spontaneous anti-tumor T cell response can fail

Lymph node

3. APC maturation/costimulation

4. T cell repertoire/activation

5. T cell differentiation/expansion/persistence

Tumor microenvironment

2. Antigens/Ag processing innate immune awareness

8. Target cell apoptosis

6. Effector T cell trafficking

7. T cell effector function (negative regulation)
Candidate approaches to overcome these immunologic checkpoints

1. Innate immune awareness/Ag presentation/APC maturation
 - Innate immune cells and cytokines, TLR agonists, CD40 ligands, vaccination—novel Ag sources

2. T cell repertoire/initial activation
 - B7 and other costimulatory ligands
 - Interference with lymph node-based or systemic negative regulators (CTLA4, IDO, arginase, anergy, Tregs, IL-10)

3. T cell differentiation/expansion/persistence
 - Differentiation cytokines (IL-12, IL-18)
 - Expansion, survival factors (IL-2, IL-7, IL-15, anti-41BB; homeostatic proliferation)

4. T cell trafficking into tumor sites
 - Intratumoral chemokines, LIGHT
 - Pro-inflammatory treatments (XRT, TLR agonists, innate cytokines)

5. Executing effector function in tumor microenvironment
 - Blockade of tumor microenvironment-based negative regulators (IDO, PD-1/PD-L1, Tregs, anergy, TGF-β, IL-10, iNOS)
 - Promote effector cell proliferation (regenerate cytotoxic granules)

6. Tumor cell susceptibility to recognition and killing
 - Blockade of key anti-apoptotic molecules (Bcl2 and Spi inhibitors)
 - Inhibit oncogenic pathways that create resistant phenotype and/or resistant microenvironment (Stat3; MEK? Notch? Wnt?)
Anti-CTLA-4 mAb + GM-CSF-transduced B16 vaccine induces tumor rejection and leads to vitiligo

van Elsas, Allison et al. JEM 1999
Anti-4-1BB + anti-PD-L1
Combination induces rejection of PD-L1-expressing tumors in vivo

Hirano, Chen et al. Cancer Res. 2005
Vaccine + CpG + Treg depletion: Control of mammary tumors in Neu Tg mice

Nava-Parada, Celis et al. Cancer Res. 2007
Conclusions and implications

• The spontaneous natural host immune response against melanoma is heterogenous; mechanism unclear:
 – Somatic differences between tumors?
 – Germline polymorphisms in immunoregulatory genes?
• Implies that dominant barrier to T cell-mediated tumor rejection may be distinct in different subsets of patients, e.g.:
 – Failed T cell priming
 – Defective T cell recruitment to tumor sites
 – Immune suppressive factors blocking T cell effector phase
• Additional immunotherapeutic interventions beyond (or in place of) vaccination may be needed to maximize tumor rejection by anti-tumor T cells
• Importantly, clinical grade reagents and methodologies have been developed, enabling clinical testing of these concepts
• Many of these principles also likely apply to chronic infections
• Final point: in the meantime, can we better select patients for vaccine trials based on immunologic features of tumor microenvironment?
Gene expression profiling in context of Erlangen dendritic cell-based vaccine in melanoma

Survival based on clinical response

Survival groups

No correlation with immune response in blood

T cell markers and chemokines

Schuler collaboration, ASCO 2009
Impact of gene expression signature on clinical outcome in GSK MAGE3 vaccine trial

Median

GS-: 2.3 months [95% CI: 2.3 - 4.4]
GS+: 10.3 months [95% CI: 6.7 - 12.4]

HR: 0.31 [95% CI: 0.13 - 0.76]

Louahed, ASCO 2008
Acknowledgments

Melanoma gene array/chemokines
Helena Harlin
Ruth Meng
Amy Peterson
Mark McKee
Craig Slingluff
Functional genomics core

LIGHT adenovirus
Ping Yu
Yang-Xin Fu
Hans Schreiber

Uncoupling negative regulation
Justin Kline
Yuan-yuan Zha
Christian Blank
Amy Peterson
Ian Brown

Type I IFNs
Mercedes Fuertes
Aalok Kacha
Justin Kline

Collaborative vaccine/gene array data
Gerold Schuler (Erlangen group)
Vincent Brichard (GSK-Bio)