Herpes Zoster & Postherpetic Neuralgia

Robert W. Johnson, MD.,FRCA.

Bristol, UK.
Is there a need?
Will the need change?
Does vaccination satisfy the need?
Will the public seek/want it?
Is it cost effective?

At least the vaccine will not encourage sexual promiscuity!!
Topics

- The varicella zoster virus
- Primary & secondary infection
- Epidemiology & anticipated change
- VZV immune mechanisms
- Cost of HZ and PHN
- PHN – prediction, mechanisms & management
- Vaccination against HZ
- Cost effectiveness of HZ vaccine
Varicella Zoster Virus (VZV)

- Primary infection
 - Varicella

- Persistence with clinical latency

- Reactivation
 - Herpes zoster
Diagnosis of HZ

- **Clinical diagnosis**
 - Up to 20% error rate
 - Most common confusion – HSV
 (cold sores, genital herpes, MI, cholecystitis)

- **Laboratory diagnosis**
 - Usually unnecessary
 - PCR
 - Culture

HZ & PHN – the problems …

- HZ is common with greater incidence in older adults and immunocompromised individuals: ~3% hospitalized

- PHN is the most common complication of HZ

- Other, serious, complications are more rare

- HZ & PHN are costly to the individual and society

- Until now no preventive strategy for HZ

Dworkin RH, Johnson RW., Breuer J et al. Management of herpes zoster. CID 2007:44(Suppl 1);S1-S25

Annecy, July 2008
Who gets Herpes Zoster?

- Normal older adults
 - Immunesenescence

- Immunocompromised individuals
 - Malignancy & its treatment
 - Lymphoma
 - Chemotherapy, radiotherapy
 - Immunocompromising disease
 - HIV
 - Therapeutic immune suppression
 - Organ transplant
 - Steroids etc.

- Normal children and younger adults

Annecy, July 2008
Age related incidence of HZ and PHN

Rate per 1000 per year

Age (years)

0 10 20 30 40 50 60 70 80+

Zoster

PHN

Hope-Simpson RE. J R Coll Gen Pract. 1975; 25:571-575

Annecy, July 2008
Incidence and absolute numbers of Herpes Zoster (EU 25)

Cases

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>0-9</th>
<th>10-19</th>
<th>20-29</th>
<th>30-39</th>
<th>40-49</th>
<th>50-59</th>
<th>60-69</th>
<th>70-79</th>
<th>80+</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU cases</td>
<td>300000</td>
<td>200000</td>
<td>150000</td>
<td>100000</td>
<td>50000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Annual rate/1000 person-yrs</td>
<td>12,00</td>
<td>10,00</td>
<td>8,00</td>
<td>6,00</td>
<td>4,00</td>
<td>2,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
</tbody>
</table>

Proportion of Patients with PHN by age group

Epidemiology and management costs of Herpes Zoster (HZ) and Post-Herpetic Neuralgia (PHN) in the UK. Remy et al

Annecy, July 2008
The future …

- Population demography
- Disease and its treatment
- Antiviral drugs
- Varicella vaccine
- Herpes zoster vaccine
European population distribution by age: population pyramids

Source: UN World Population Ageing: 1950–2050
Facts about ageing

- Social and medical advances have added ‘years to life’ but not ‘life to years’
- Short-term debility leads to prolonged detriment to ADL and independence
- Zoster-specific CMI declines with advancing age
- Neurosenescence may add to PHN susceptibility
Reported varicella cases and vaccination coverage* by year -- Varicella Active Surveillance Project, 1995-2005

Antelope Valley

West Philadelphia

Coverage estimates from NIS in LA and Philadelphia, among children 19-35 months of age.

Hypothesis - effects of vaccination strategies on HZ

- Infant vaccination
- Targeted vaccination

Annecy, July 2008
Lifetime changes in immune status

Prediction of PHN risk

- Baseline and follow up data from 965 HZ patients examined by univariate and multivariate analysis confirmed that:
 - Older age
 - Female gender
 - Presence of prodrome
 - Greater rash severity
 - Greater acute pain severity
 - (Diabetes)

made independent contributions to predicting which patients developed PHN

Annecy, July 2008
What do antivirals achieve?

- Reduce acute pain
- Accelerate rash healing
- Reduce period of viral shedding
- Reduce duration of pain
- Effect on complications other than pain
- Excellent safety profile
- Reduction in overall burden of HZ
Cost of HZ – 1st 6 months

- Societal and economic burden
- Prospective observational pilot study
- 70 patients had detailed follow-up
- Average overall cost 1st 6 months £524 (min 20, med 158, max 4218)
- Medical costs highest >65
- Societal costs highest <65

Mean cost per PHN episode by severity

Proportion of herpes zoster patients developing post-herpetic neuralgia and its management in the UK. Gauthier et al

Annecy, July 2008
Proportion of management costs of HZ and PHN by category

Epidemiology and management costs of Herpes Zoster (HZ) and Post-Herpetic Neuralgia (PHN) in the UK. Remy et al

Annecy, July 2008
Facts about PHN

- Antiviral drugs (+/- steroids) have limited effect in prevention of PHN: they do not ‘bring dead neurons back to life’
- Nerve blocks or neuropathic pain drugs: evidence for PHN prevention limited - lacking in practicality
- Despite significant advances <50% of PHN patients gain 50% pain relief
Sources of Neuropathic Pain

- Tic douloureux
- HIV-associated pain
- Poststroke pain
- Phantom pain (postamputation)
- Multiple sclerosis
- Causalgia or reflex sympathetic dystrophy
- Spinal cord injury
- Cancer-related pain
- Postherpetic neuralgia
- Diabetic neuropathy
- Low back pain

US prevalence (millions of cases)

Annecy, July 2008
Agents with NNT < 5

- M-prednisolone (1.t)
- Aspirin (topical)
- Lidocaine 5% patch
- TCAs
- Strong opioids
- Capsaicin
- Gabapentin
- Tramadol
- Pregabalin

NNT (50%)

Annecy, July 2008

Hempenstall et al 2005. Based on systematic review of RCTs with a Jadad score ≥ 3
Management Plan for HZ & PHN

- **Herpes Zoster**
 - Early antiviral therapy
 - Early neuropathic pain treatment (e.g., Amitriptyline/Gabapentin)

- **Postherpetic Neuralgia**
 - Antidepressants (e.g., Amitriptyline)
 - Anticonvulsants (Gabapentin, Pregabalin)
 - Opioids (Tramadol, Oxycodone, Morphine)
 - Topicals (Lidocaine, Capsaicin)

- **Children**
 - Vaccination

- **Adults**
 - Vaccination
Prevention of Herpes Zoster by vaccination

- Reduction in number of susceptible individuals in population
 - Varicella vaccine

- Increased VZV-specific CMI of seropositive individuals
 - Relevance of exogenous boosting
 - HZ vaccine

- Unlike other vaccine-preventable diseases, HZ not directly related to exposure to exogenous infective agent

Annecy, July 2008
Rationale for vaccination against HZ
The Oka vaccine

• Live, attenuated, cell-free preparation of Oka strain VZV (killed virus antigen weak stimulant of CMI)

• Original ‘wild type’ virus isolated by Michiaki Takahashi from 3 year old Japanese child whose family name was Oka

• Three licensed preparations – Merck (stored at -15ºC), GSK (stored at 2ºC) and Merck (refrigerated)

• The same strain of Merck/Oka virus is used for varicella and herpes zoster protection BUT the latter contains a several fold greater (14x) titer of virus because of the reduced immune response of older adults
A Vaccine to Prevent Herpes Zoster and Postherpetic Neuralgia in Older Adults

Shingles Prevention Study

Objective

- To determine whether immunization with a live attenuated zoster vaccine can reduce the incidence and/or severity of HZ and PHN in persons ≥60 years of age.
Shingles Prevention Study

Design

- Randomized, double-blind, placebo controlled trial
- 38,546 subjects
- Stratified by age group: 60 - 69 yr and >70 yr
- Active vaccine or placebo vaccine
Shingles Prevention Study

- **Participants**
 - Immunocompetent adults greater than 60 years old who had no prior history of herpes zoster
 - History of varicella or ≥30 years residence in US
 - Included male and female veterans and non-veterans
 - Sample size estimate = 37,200 (18,600 each group) for 95% power, \(\alpha = 0.05 \) (two-sided), to detect 60% reduction in herpes zoster BOI score

Annecy, July 2008
Incidences of HZ and PHN

- PHN – worst pain and discomfort ≥ 3 (0-10 scale) 90 or more days from rash onset
 - $V_{E_{PHN}} = 1 - (PHN \text{ incidence vaccine/PHN incidence placebo})$

- HZ
 - $V_{E_{HZ}} = 1 - (HZ \text{ incidence vaccine/HZ incidence placebo})$
Summary of results

HERPES ZOSTER VACCINE:

- Reduces HZ Pain BOI by 61% *

*p<0.001 versus placebo

Annecy, July 2008
Burden of Illness (BOI)

- Population measure
- Sensitive to the incidence, duration and severity of HZ pain over 6 months

Severity-by-duration (AUC) calculated for each HZ case

Subjects without HZ were assumed to have no HZ-associated pain (i.e., AUC=0)
HERPES ZOSTER VACCINE:

- Reduces HZ Pain BOI by 61% *
- Prevents HZ by 51% *
- Prevents PHN by 67% *
- Elicits a VZV-specific CMI response

* p< 0.001 versus placebo

Annecy, July 2008
ZO斯塔瓦克斯™ 的效力随年龄变化

- HZ
- PHN
- BOI

年龄段：
- 60 至 69 岁
- ≥70 岁

95% CI

疫苗效力（%）

Annecy, July 2008
Safety

- Serious Adverse Events (whole study population): Number and type of event similar in vaccine and placebo groups.
- SAE (safety sub-study) higher in vaccine (1.9%) than placebo (1.5%) group - RR 1.5 (95%CI=1.0-2.3).
- No temporal or clinical patterns of adverse events in vaccine recipients to suggest a causal relationship.
- Death and hospitalization similar in both groups throughout.
Safety

- Mild local & systemic reactions:
 - Injection site erythema, swelling, pain etc 48.3% in vaccine group & 16.6% with placebo (p<0.05): risk higher in younger cohort
 - Headaches etc slightly more common in vaccine recipients
 - Risk of fever similar in both groups
Cost-effectiveness

- 5 studies have estimated cost-effectiveness of 1 dose vaccination ≥60yr
- At vaccine cost of US$150: -
 - $27,000 – 112,000 per QALY
 - WHO threshold = 3x gross domestic product per capita = $94,431 for US
 - Appears acceptable in comparison to other interventions but at intermediate-to-high end of range
Advice at this time

- Vaccinate against HZ at age 50 to 60
- In patients who develop HZ:
 - Antiviral drugs (preferably pro-drug)
 - Effective analgesia
 - Early use of TCA / pregabalin / strong opioids if required
Summary

HERPES ZOSTER VACCINE

- Reduces HZ Pain BOI by 61% *
- Prevents HZ by 51% *
- Prevents PHN by 67% *
- Elicits a VZV-specific CMI response
- Has an excellent safety profile
- Efficacy for HZ & PHN endpoints was demonstrated through 48 months of follow-up

* p< 0.001 versus placebo

Efficacy on HZ Burden of Illness (BOI)

- **HZ BOI** = Incidence x severity x duration of HZ associated pain
- Similar HZ Vaccine Efficacy when results stratified according to sex or age

EFFICACY = 61.1%
(95% CI 51.1 - 69.1%)

* p< 0.001 versus placebo

HZ Burden of Illness (BOI) Score

- Herpes zoster BOI Score is the average Area-Under-the-Curve (AUC) of zoster pain of all individual randomized subjects in a group of subjects (e.g., vaccine recipients) for 6 months.

 - Subjects who do not develop herpes zoster are assigned a score of 0.

- Vaccine efficacy for BOI defined as relative reduction in BOI score in vaccine vs. placebo group.

 - \[VE_{BOI} = 1 - \frac{\text{BOI score vaccine}}{\text{BOI score placebo}} \]
Efficacy on HZ

- **HZ case definition** = PCR+ or Culture + or CEC+

Vaccine Efficacy on HZ incidence

- **EFFICACY = 51.3%**
 (95% CI 44.2 - 57.6%)

- **p< 0.001 versus placebo**

HZ Vaccine Efficacy greater among 60-69 year old subjects
than subjects > 70 years (64% versus 38%, p<0.001)

Efficacy on PHN incidence

PHN = presence of pain (score 3 on 0-10 scale) beyond 90 days after HZ rash onset

![Graph showing vaccine efficacy on PHN incidence]

- **Vaccine Efficacy on PHN incidence**
 - Placebo: 1.38
 - Vaccine: 0.46
 - **EFFICACY = 66.5%**
 - (95% CI 47.5 - 79.2%)
 - *p < 0.001 versus placebo

- Cases of PHN: HZ vaccine group: 27 versus Placebo group: 80
- Similar HZ Vaccine Efficacy when results stratified according to sex or age

M.N. Oxman et al, N Engl J Med, 2005 Jun 2; 352 (22): 2271-84
Shingles Prevention Study

- **Intervention**
 - 0.5 ml live, attenuated zoster vaccine (Oka/Merck) or placebo s.c. in non-dominant arm
Study Subjects

Enrolled 38,546

Zoster vaccine 19,270

Terminated before end of study
793 (4.1%) Died
57 (0.3%) Withdrew
61 (0.3%) Lost to follow-up

Completed study 18,359 (95.3%)

Placebo 19,276

Terminated before end of study
792 (4.1%) Died
75 (0.4%) Withdrew
52 (0.2%) Lost to follow-up

Completed study 18,357 (95.2%)

Baseline Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Vaccine Group (N=19,270)</th>
<th>Placebo Group (N=19,276)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age ≥70 yr</td>
<td>8,892 (46.1%)</td>
<td>8,907 (46.2%)</td>
</tr>
<tr>
<td>Sex – Female</td>
<td>7,867 (40.8%)</td>
<td>7,919 (41.1%)</td>
</tr>
<tr>
<td>Race – White</td>
<td>18,393 (95.4%)</td>
<td>18,381 (95.4%)</td>
</tr>
<tr>
<td>Health Limits No*</td>
<td>9,924 (51.5%)</td>
<td>9,862 (51.2%)</td>
</tr>
<tr>
<td>Mild</td>
<td>7,440 (38.6%)</td>
<td>7,423 (38.5%)</td>
</tr>
<tr>
<td>Moderate</td>
<td>1,637 (8.5%)</td>
<td>1,714 (8.9%)</td>
</tr>
<tr>
<td>Severe</td>
<td>266 (1.4%)</td>
<td>273 (1.4%)</td>
</tr>
</tbody>
</table>

*Health-related limitations on activities

Annecy, July 2008

Adapted from Table 1 in Oxman et al. NEJM. 2005;352:2271-84
Sub-study populations

- Safety sub-study (n = 6616)
 - At all 22 study sites
 - Detailed safety assessment
 - Completed a vaccination report card through Day 42 post-vaccination
 - Followed for hospitalizations until the end of study

- CMI sub-study (n = 1395)
 - At 2 study sites
 - Specimens were obtained at baseline and post-vaccination (6 weeks; 1, 2 and 3 years)
 - Antibody level by gpELISA
 - VZV-specific CMI by ELISPOT and RCF assays
Efficacy analysis population

- Modified Intention-To-Treat population (MITT)
 - All enrolled subjects who did not develop evaluable HZ within 30 days post-vaccination
 - Analyses included only the first confirmed case

- Why exclude cases in the first 30 days?
 - Cases may have been in development at the time of vaccination
 - Vaccine-induced immune responses unlikely to be fully developed for some time after vaccination
 - Potential confusion with vaccine-induced rash

Confirmation of HZ cases

Suspected cases of HZ
1,308

VZV Vaccine
481

Not a confirmed case of HZ
156 Not HZ
3 Not seen until after crusting

Confirmed cases of HZ (ITT)
322

Excluded from MITT
6 HZ within 30 days of vaccination
1 second episode of HZ

315 confirmed cases of HZ (MITT)
294 VZV positive, PCR
2 VZV positive, local culture
19 HZ by Clin. Eval. Committee

Placebo
827

Not a confirmed case of HZ
161 Not HZ
4 Not seen until after crusting

Confirmed cases of HZ (ITT)
662

Excluded from MITT
18 HZ within 30 days of vaccination
2 second episode of HZ

642 confirmed cases of HZ (MITT)
600 VZV positive, PCR
8 VZV positive, local culture
34 HZ by Clin. Eval. Committee

Annecy, July 2008

Histogram of Severity-by-Duration Score (AUC) of HZ Pain Among Evaluable HZ Cases by Vaccination Group (MITT Population)

HZ-Associated Pain Severity-by-Duration Score (AUC)

Annecy, July 2008
Efficacy on all HZ severe cases

HZ severe cases = HZ with severe x duration pain score > 600

Vaccine efficacy on severe HZ cases

EFFICACY = 73%
(95% CI 46 - 87.6%)
SPS Safety Evaluation

- **All Subjects**
 - All adverse events recorded within 42 days after vaccination
 - Subjects contacted at end of 42 day period and prompted for any other unreported adverse events
 - Deaths identified by reports from family and during follow-up of missed monthly calls
Serious Adverse Events Among All Subjects

<table>
<thead>
<tr>
<th>Event</th>
<th>Vaccine</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. Subjects</td>
<td>19,270</td>
<td>19,276</td>
</tr>
<tr>
<td>Day of Vaccin. To Study End</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death</td>
<td>218 (2.1%)</td>
<td>246 (2.4%)</td>
</tr>
<tr>
<td>Vaccine-related SAE</td>
<td>2 (<0.1%)</td>
<td>3 (<0.1%)</td>
</tr>
<tr>
<td>Day of Vaccin. To Day 42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death</td>
<td>14 (0.1%)</td>
<td>16 (0.1%)</td>
</tr>
<tr>
<td>≥1 SAEs</td>
<td>255 (1.4%)</td>
<td>254 (1.4%)</td>
</tr>
</tbody>
</table>

Adapted from Table 4 in Oxman et al. NEJM 2005;352:2271-84
SPS Safety Evaluation

- **Adverse Events Substudy**
 - Approximately 300 subjects per site enrolled
 - During 42 days after vaccination, daily log of body temperature and vaccination report card of clinical symptoms and injection site complaints
 - During remainder of study, followed by monthly calls and site personnel to identify all hospitalizations
Safety (AEs sub-study)

Day of vaccination to Day 42

Injection site AEs

- Vaccine – 3,345 Subjects
- Placebo – 3,271 Subjects

Systemic AEs ≥ 1

- Vaccine – 23.6%
- Placebo – 24.7%

Rate of HZ Complication
(MITT Population)

<table>
<thead>
<tr>
<th></th>
<th>ZOSTAVAX™</th>
<th>Placebo</th>
<th>% Relative Reduction in ZOSTAVAX™ Recipients (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N=19,270</td>
<td>N=19,276</td>
<td></td>
</tr>
<tr>
<td>Neurologic†</td>
<td>n</td>
<td>Incidence Rate*</td>
<td>n</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>0.5</td>
<td>82</td>
</tr>
<tr>
<td>Cutaneous</td>
<td>39</td>
<td>0.7</td>
<td>116</td>
</tr>
<tr>
<td>Ocular involvement</td>
<td>14</td>
<td>0.2</td>
<td>40</td>
</tr>
<tr>
<td>Sacral dermatome</td>
<td>6</td>
<td>0.1</td>
<td>24</td>
</tr>
<tr>
<td>involvement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visceral complications</td>
<td>9</td>
<td>0.2</td>
<td>28</td>
</tr>
</tbody>
</table>

* Incidence rate = per 1000 person years (total population).
† Excluding pain.

Annecy, July 2008
Cost-effectiveness of HZ vaccine in USA

- Age-specific analytic model
- Lifetime costs and outcomes for HZ, PHN, other HZ complications
- Vaccinated and non-vaccinated cohorts aged ≥ 60 years
- Societal and payer perspectives considered

Pellissier JM et al. *Vaccine* 25 (2007);8326-8337
For 1,000,000 US vaccine recipients ≥60 ...

- HZ vaccine would eliminate:
 - 75,548-88,928 cases of HZ
 - >20,000 cases of PHN
 - >300,000 outpatient visits
 - >375,000 prescriptions
 - >97,000 ER visits
 - >10,000 hospitalizations

- Saving US$ 82-103 million annually

Pellissier JM et al. *Vaccine* 25 (2007);8326-8337
Cost-effectiveness of HZ vaccination in US

- US$ 16,229 - 27,609 per QALY gained depending on data source and analytic perspective.

- Most sensitive to:
 - PHN costs
 - Duration of vaccine efficacy
 - Complication costs
 - QALY loss associated with pain

Pellissier JM et al. Vaccine 25 (2007);8326-8337
Cost-effectiveness and QALYs

- US$ 50,000 – 100,000 per QALY gained considered cost-effective

- WHO suggests 3 X domestic product/capita = 3 X £20,000 = £60,000 for UK

- For comparison:
 - Hypertension management US$ 60,000/ QALY gained
Cost-effectiveness results in the 65+ UK population
(40% coverage rate)

<table>
<thead>
<tr>
<th>Results</th>
<th>Vac Policy</th>
<th>No Vac Policy</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costs</td>
<td>£505,521,469</td>
<td>£159,097,028</td>
<td>£346,424,441</td>
</tr>
<tr>
<td>Effectiveness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QALYs</td>
<td>74,061,721</td>
<td>74,031,587</td>
<td>30,134</td>
</tr>
<tr>
<td>HZ Cases</td>
<td>634,725</td>
<td>779,603</td>
<td>144,878</td>
</tr>
<tr>
<td>PHN Cases</td>
<td>133,945</td>
<td>184,028</td>
<td>50,083</td>
</tr>
<tr>
<td>ICERS</td>
<td></td>
<td></td>
<td>£11,496</td>
</tr>
<tr>
<td>Cost per QALY gained</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost per HZ Case Avoided</td>
<td></td>
<td></td>
<td>£2,391</td>
</tr>
<tr>
<td>Cost per PHN Case Avoided</td>
<td></td>
<td></td>
<td>£6,917</td>
</tr>
</tbody>
</table>
Mean cost per case of HZ over 6-month follow-up by age

<table>
<thead>
<tr>
<th>Age class</th>
<th>Sample size</th>
<th>Patient (£)</th>
<th>NHS (£)</th>
<th>Society (£)</th>
<th>Total (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td><65 years</td>
<td>45</td>
<td>10.8 (0, 4, 187)</td>
<td>85.6 (20, 68, 696)</td>
<td>430.0 (0, 26, 3265)</td>
<td>526.3 (20, 173, 3578)</td>
</tr>
<tr>
<td>65+ years</td>
<td>25</td>
<td>42.5 (0, 0, 1000)</td>
<td>400.9 (48, 138, 3257)</td>
<td>76.6 (0, 0, 957)</td>
<td>519.9 (48, 138, 4218)</td>
</tr>
<tr>
<td>Overall</td>
<td>70</td>
<td>22.1 (0, 1, 1000)</td>
<td>198.2 (20, 86, 3257)</td>
<td>303.8 (0, 0, 3267)</td>
<td>524.0 (20, 158, 4218)</td>
</tr>
</tbody>
</table>

The minimum, median and maximum costs are in ()

Follow up: 146 GP consultations, 7 hospital visits, 6 emergency ambulances, 4 admissions, 6 consultations with complementary practitioners, 307 days work lost by patients, 52 by carers
The future

- Duration of protection
- Need for booster injection(s)
- Effects in the elderly ‘unfit’ patient
- Vaccine suitable for immunocompromised patients
- Reduced prevalence of seropositive individuals
- More effective vaccine?
 - n.b. effectiveness of other vaccines in elderly adults