

"Paper Diagnostics (and others technologies): Simple, Low-Cost Systems"

George M. Whitesides
Department of Chemistry and
Chemical Biology
Harvard University
gwhitesides@gmwgroup.harvard.edu

Bill & Melinda Gates Foundation MF 3 (DARPA; UC Irvine)

Structure

Harvard group (Gates Foundation): Invention

 Diagnostics for All (501-c-3; Not for Profit Company): Engineering/Premanufacturing Prototypes; Trials; Regulatory Affairs

Paper Diagnostics (for profit; royalties returned to

So, the Question

- How can we provide diagnostics
 - ...at "zero" cost
 - ...where there are no doctors or highly trained paramedical personel
 - ...and no infrastructure
 - ...and not even a shared understanding of "disease"?
 - High-quality point-of-care results at insignificant cost (at a distance)

What would we like to know/do?

- Triage: "Fever of unknown origin" ("fever panel")
- Specifics for detailed diagnosis
 - AIDs; Hepatitis B/C/E; Malaria; Lower respiratory/enteric disease; TB (especially drug resistant)
- Guidance for Treatment:
 - Treatment-limiting drug reactions/Toxicity;
 Compliance; response. Counterfitting.
 Delivery/companion diagnostics.
- Many Other Uses
 - Nutrition; Agriculture/Food Safety/Quality; Vaccination Status; Animal/Plant Disease; Water; Surveillance

Key Ideas

- Simplicity. Generating medically relevant information as simply (inexpensively, robustly, ...) as possible
- Changing the Cost Structure for Biomedical Information. Change emphasis from "profitable devices that generate information" to "manipulating abundant, inexpensive information."

A Resource Allocation Issue: What Kinds of Tests/Assays?

- Metabolic Assays (enzymes, metabolites, ..: Glc, electrolytes, AST, ASP,
- Immunoassay (ELISA...)
- Nucleic Acids (DNA, mRNA, ..;)
- Cells (Malaria, rare cells)
- Tissues and 3D Cell Culture
- Organism (sleep/awake, depression, TBI)

"Simple" microfluidics: PDMS and Soft Lithography

"An ideal diagnostic test is ASSURED (affordable, sensitive, specific, user-friendly, rapid, equipment-free, and delivered to those who need it)."

— World Health Organization

lateral flow tests

Solid Wax Printing

1. Design

2. Print

3. Melt

Inexpensive Large Scale Printing

Cost of printing ~ 5 cents/ page ~ 0.1 cents/device

3D Paper Microfluidic Devices

Liver Function Tests

LFT Development – Diagnostics For All

Visual distinction

Quantitative readout

Thread as a Matrix for Biomedical Assays

- 1. Fabricate devices without lab equipment.
- 2. Small sample volumes (~1 μl per thread).
- 3. Rapid (minutes)

Quantitative Assays and Telemedicine

Dip device into sample

Device wicks sample into test zones

Color develops for each assay

Select test zones and record mean intensity using Adobe®Photoshop®

Glucometers as electrochemical readers for low-cost diagnostics

Wax-printed device

Screen-printed electrodes/circuits

TRUEtrack

Glucometers as electrochemical readers

Calibration of the glucometer for paper-based device

Slope: 1.78

 $c_{\text{real}} = c_{\text{read}}/1.78$

Calibration curve for the analysis of glucose

Other analytes in progess: Lactate, cholesterol, phenolic compounds

Hydrodynamic μ PED for the Analysis of Heavy Metal Ions

- Simple, low-cost, and portable
- Do not require extra instruments
- Reusable

Analysis of Pb(II) in a mixture of Pb(II) and Zn(II)

- A) A drop placed on electrodes
- B) Stagnant μ PEDs
- C) Hydrodynamic µPEDs (120s)
- D) Hydrodynamic μ PEDs (360s)

Hydrodynamic μ PED for the Analysis of Heavy Metal Ions

Limit of detection of Pb(II): 1.0 ppb

Sensitivity: 0.17 μA·ppb⁻¹

Signal detection: battery-powered, frequency-modulated detector

Eggbeater as Centrifuge

Aqueous Multiphase Polymer Systems use in density-based separations

interfaces between phases define steps in density that are useful to separate and collect objects based on density

Density-Based Cell Separation as a Diagnostic *malaria*

loss of density caused by parasite metabolism of hemoglobin

all intact cells contain parasites

Bioassays in 96-Zone Paper Plates Using Microplate Readers

- Total Protein Assays:
 - Ponceau-S
 - Bradford

Thermochromic Displays on Paper

- Cost <\$0.10/m² in materials
- Thin (100 μm), flat, lightweight (<20 mg/cm²).
- Can be folded, rolled, twisted, and creased.

Thermochromic Displays

- Andres Martinez
- Scott Phillips
- Sergey Shevkoplyas
- Emanuel Carrilho
- Chao-Ming Chen
- Zhihong Nie
- Meital Reches
- Frederique Deiss
- Kat Mirica
- Charlie Mace

- Diagnostics for All
 - Una Ryan CEO

Cells-in-Gels-in-Paper

The main idea

PNAS, web this week, http://wyss.harvard.edu/viewpressrelease/26/the-book-of-life-can-now-literally-be-written-on-paper-