PERSPECTIVES IN THE DEVELOPMENT OF VACCINES AGAINST FLAVIVIRUSES

Thomas P Monath MD

M. Rossman

Thomas P Monath MD
Agenda

• State of the art of flavivirus vaccines
• Second generation vaccines
 – Rational design, balancing attenuation and immunogenicity
 • Viscerotropism and neurotropism
 – Multivalent live vaccines: interference
• Third generation vaccines
• Immune correlates
• Summary of vaccine profiles
Vaccine indications

<table>
<thead>
<tr>
<th>Virus</th>
<th>Existing vaccines?</th>
<th>Target species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow fever</td>
<td>Yes</td>
<td>Human</td>
</tr>
<tr>
<td>Dengue</td>
<td>Expt’l</td>
<td>Human</td>
</tr>
<tr>
<td>Japanese encephalitis</td>
<td>Yes</td>
<td>Human, horse, pig</td>
</tr>
<tr>
<td>Tick-borne encephalitis</td>
<td>Yes</td>
<td>Human</td>
</tr>
<tr>
<td>West Nile</td>
<td>Yes (vet), expt’l (human)</td>
<td>Human, horse, birds (e.g. goose)</td>
</tr>
<tr>
<td>Kyasanur Forest disease</td>
<td>Yes</td>
<td>Human</td>
</tr>
<tr>
<td>Murray Valley encephalitis</td>
<td>No</td>
<td>Human</td>
</tr>
<tr>
<td>St. Louis encephalitis</td>
<td>No</td>
<td>Human</td>
</tr>
<tr>
<td>Rocio</td>
<td>Defunct</td>
<td>Human</td>
</tr>
<tr>
<td>Louping ill</td>
<td>Defunct</td>
<td>Sheep, human</td>
</tr>
</tbody>
</table>
Flavivirus Vaccines- an Era of Progress

• New dengue vaccines are in advanced clinical development, one in Phase 3
 – Prospects for licensure as early as 2013-14
• New, vaccines against JE introduced in 2009-10
 – Inactivated, purified, alum adsorbed (Ixiaro®)
 – Live vectored, single dose (Imojev®)
• Vaccines against WN in Phase 2
• New vaccines against TBE and YF are in development
• Many are recombinant, rationally designed using infectious clone technology
• Third generation vaccine technology is advancing and showing promise
Factors that facilitate vaccine development

<table>
<thead>
<tr>
<th>Factor</th>
<th>YF, JE, WN, TBE</th>
<th>DEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Established immune correlate (seroprotection)</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Animal model (immunocompetent, disease similar to humans)</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Single serotype</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>No immunopathology</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>No chronic infection, immune evasion</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>High inapparent:apparent infection ratio or natural disease generally self-limited</td>
<td>Yes (except YF)</td>
<td>Yes</td>
</tr>
<tr>
<td>Vaccine/Infection</td>
<td>Time to Approval or Wide-Scale Use</td>
<td>Years</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>YF FNV (1931)</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>YF 17D (1936)</td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td>JE mouse (1954)</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>TBE Austria (1971)</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>JE SA14-14-2 (1981)</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>JE SA14-14-2 inactiv (2001)</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>JE ChimeriVax (1997)</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>WN ChimeriVax (2000)</td>
<td></td>
<td>7 (vet)</td>
</tr>
<tr>
<td>DENGUE (1971)</td>
<td></td>
<td>?43</td>
</tr>
<tr>
<td>Vaccine Types</td>
<td>YF</td>
<td>DEN</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>(+) investigational, + commercial (v) veterinary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Live, attenuated</td>
<td>+</td>
<td>(+)</td>
</tr>
<tr>
<td>Live, flavi vector</td>
<td>(+)</td>
<td>+</td>
</tr>
<tr>
<td>Defective, single cycle</td>
<td>(+)</td>
<td>(+)</td>
</tr>
<tr>
<td>Non flavi vector</td>
<td>(+)</td>
<td></td>
</tr>
<tr>
<td>Inactivated</td>
<td>(+)</td>
<td>(+)</td>
</tr>
<tr>
<td>Subunit E or EDIII</td>
<td>(+)</td>
<td></td>
</tr>
<tr>
<td>Recombinant VLP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td>(+)</td>
<td></td>
</tr>
</tbody>
</table>
Evolution of Live Flavivirus Vaccines

1930s-1980s
- Yellow fever FNV (Dengue mouse brain)
- Yellow fever 17D
- DEN LAV (WRAIR)
- DEN LAV (Mahidol)

1990s-2000s
- DEN 1Δ30, 4Δ30 (NIH)
- YF chimeras (Acambis)
- DEN2 chimeras (CDC)
- DEN4 Δ30 chimera (NIH)
- Ad5 vector (GenPhar)
- Measles (Inst Pasteur)

2010
- Single cycle (Flavi and alphavirus)
 (UTMB, U Queensland, Carolina Vaccine Inst)

Empirical

Vector from established vaccine strain

1st generation

Rational design

2nd generation

3rd generation
Evolution of Inactivated Flavivirus Vaccines

First generation: Crude suspensions
1930s-1940s

Mouse brain
JE (Russia, Japan)

Chick embryo
JE (USA)

Tissue or Primary cells

Wild-type virus

Second generation: Purified virus
1950s-1970s,

Primary hamster kidney
JE (China)

Mouse brain, purified
JE (Japan)

Third generation: purified (adjuvanted)
1980s

Chick embryo cell (alum)
TBE (Austria)

1990s-2010

Cell line

Vero cell
JE (Japan, China)
JE SA14-14-2 alum (US → Austria)
YF alum (US)
Dengue (US)

Attenuated virus
New Flavivirus Vaccines in Clinic

<table>
<thead>
<tr>
<th>Indication</th>
<th>Developer</th>
<th>Type</th>
<th>Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow fever</td>
<td>Xcellerex</td>
<td>Inactivated</td>
<td>Phase I</td>
</tr>
<tr>
<td>JE</td>
<td>Sanofi Pasteur</td>
<td>Live, recombinant</td>
<td>Approval</td>
</tr>
<tr>
<td>Dengue</td>
<td>Sanofi Pasteur</td>
<td>Live, recombinant</td>
<td>Phase III</td>
</tr>
<tr>
<td></td>
<td>GSK</td>
<td>Live, empirical</td>
<td>Phase II</td>
</tr>
<tr>
<td></td>
<td>(NIH) Biologicals E, Butantan</td>
<td>Live, recombinant</td>
<td>Phase I</td>
</tr>
<tr>
<td></td>
<td>Inviragen</td>
<td>Live, recombinant</td>
<td>Phase I</td>
</tr>
<tr>
<td></td>
<td>Hawaii Biotech/Merck</td>
<td>Subunit</td>
<td>Phase I</td>
</tr>
<tr>
<td></td>
<td>US Navy</td>
<td>DNA</td>
<td>Phase I</td>
</tr>
<tr>
<td>West Nile</td>
<td>Sanofi Pasteur</td>
<td>Live, recombinant</td>
<td>Phase II</td>
</tr>
<tr>
<td></td>
<td>Hawaii Biotech/Merck</td>
<td>Subunit</td>
<td>Phase I</td>
</tr>
<tr>
<td></td>
<td>NIAID/VRC</td>
<td>DNA</td>
<td>Phase I</td>
</tr>
<tr>
<td>TBE</td>
<td>NIH</td>
<td>Live, recombinant</td>
<td>Phase I</td>
</tr>
</tbody>
</table>
First Generation Live Vaccines

• Empirical passage, altered host range
 – Principles established by Pasteur (serial passage of rabies in rabbit brain)
• Tissue substrates (YF, JE) or primary cells (JE, DEN)
• Facilitated by animal model to assess attenuation (YF, JE)
• Dengue relied on in vitro markers (ts, plaque size), sometimes proved fallible
Live vaccines
The ‘See-saw Dilemma’
Empirical Passage

YF (French)
42
FNV
Mouse brain
134

FNV
Under-attenuated
Encephalitis 2-4%

YF (Asibi)
Chick embryo
114
176

YF (Asibi)
Chick embryo
114
176

JE (SA14)
PHK cells
100

SA14-5-3
(over-attenuated)

SA14-14-2
No recognized SAEs

Encephalitis 0.8/10^5
Hepatitis 0.4/10^5

Attenuation, NHP

Viscero
Neuro
Viscerotropism and Neurotropism are Distinct Phenotypes

<table>
<thead>
<tr>
<th>YF Strain</th>
<th>Mouse (weanling)</th>
<th>Monkey</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IC (AST)</td>
<td>IC</td>
</tr>
<tr>
<td>Parent (wild-type)</td>
<td>Death, encephalitis (7-8 days)</td>
<td>Death, high viremia, hepatitis</td>
</tr>
<tr>
<td>FNV</td>
<td>Death, encephalitis (4-6 days)</td>
<td>Death, encephalitis</td>
</tr>
<tr>
<td>17D</td>
<td>Death, encephalitis (9-11 days)</td>
<td>Survival/mild encephalitis</td>
</tr>
</tbody>
</table>
Attenuation in incidence of disease following YF or JE vaccine vs. wt virus

YELLOW FEVER

- **YF wild-type**: 143 cases/1000 persons infected
- **YF 17D**: 0.01 cases/1000 persons infected

DECREASE IN VIRULENCE

- **14,300-fold**

JAPANESE ENCEPHALITIS

- **JE wild-type**: 7 cases/1000 persons infected
- **JE SA14-14-2**: 0 cases/1000 persons infected

- **>10^6-fold**
Immunogenicity of two live vaccines

Yellow fever 17D

Monath T & Chen L, unpub. 2010

JE SA14-14-2

Sohn et al Vaccine 1999;17:2259
Immunogenicity of inactivated vs. live first generation JE vaccine

- Live, SA14-14-2
 - Sohn et al Vaccine 1999;17:2259
 - Seroconversion: 96%

- Inactivated, SA14-14-2 (Ixiaro®)
 - 1 dose
 - Seroconversion: 96%
 - 2 doses
 - Seroconversion: 96%
 - 3 doses
 - Seroconversion: 94%

- Inactivated, JE-VAX®
 - Intercell AG Ixiaro®
 - Prescribing information

GMT (PRNT_{50})

0 50 100 150 200 250 300
Learnings No. 1

• Residual neurotropism (vicerotropism) are a feature of all live vaccines
 – Host and viral factors determine disease expression
 – There is a small percentage of the human population with genetically determined susceptibility to severe flavivirus infection

• Immunogenicity and attenuation are correlated
 – Reflected in dose response and nonclinical biomarkers

• A single dose of live vaccine is as immunogenic as multiple doses of inactivated antigen
 – Adjuvant effect, innate immunity, replication/antigenic mass
Second Generation Live Vaccines

• Rational design enabled by
 – infectious clone technology
 – an understanding of genome structure-function relationships
 – sequencing for QC

• Two general approaches:
 – Site directed mutagenesis or deletion
 – Chimeric constructs
 – These approaches are often combined

• Can take advantage of existing attenuated vaccines (e.g. YF, JE, DEN-2)
 – As ‘body parts’ in the chimeric constructs
 – As guides to construction
 • e.g. use of wild-type DEN strains as prM-E donors (experience with DEN-2 PDK-53 vaccine)
Second Generation Live Vaccines

Chimeric Vaccine strategy

– Heterologous vector

- Vector can be an existing vaccine
 - Provides a benchmark phenotype for nonclinical and clinical evaluation
- ?less interference between constructs with different donor gene serotypes
- Heterologous T cell epitopes, fewer cross-reactive CTLs where these may be undesirable (e.g. dengue)
Development of NIH Dengue Vaccines

DEN1 Candidates
- Under-attenuated
 - DEN1
 - DEN4
 - Under-attenuated
 - D1
 - DEN4
 - Over-attenuated
 - DEN1
 - DEN4
 - Over-attenuated
 - D1
 - DEN4
 - Under-attenuated
 - DEN1
 - Vaccine candidate

DEN3 Candidates
- Under-attenuated
 - DEN3
 - 30
 - D3
 - DEN4
 - Over-attenuated
 - DEN3
 - D3
 - DEN4 3’NCR
 - Vaccine candidate
 - DEN3
 - 30
 - Vaccine candidate
 - DEN3
 - 30,31
Learnings No. 2

• Construction is relatively easy, assessing biology is not

• Imperfect knowledge of
 – Molecular determinants of virulence (virulence is multigenic)
 – Epitope composition

• Achieving the right balance of attenuation and immunogenicity is challenging

• Genetic instability of RNA viruses remains an issue for live vaccines
YF 17D as a Vector

- Long history of use, approved in all countries
- Powerful immunogen (innate immune activation, self-adjuvanting)
- Single injection, low dose requirement
- Rapid onset of immunity (10 days)
- Durable immunity (≈life-long)
- No anti-vector immunity (prM-E replaced)
- Rare SAEs, but steps could be taken to dial in additional safety features
Yellow fever 17D; strong innate response drives adaptive immunity, balanced Th1/2

- IFNα

Integrated stress response
- EIF2K4, EIF2 phosphorylation
- calreticulin, protein disulfide isomerase, etc

Adaptive response
- TH1
- TH2
- CD8
- B cell

Pulendran B Nature Reviews/Immunol 2009;9:1
Construction of Chimeric Virus

1. Full length cDNA \rightarrow SP6 transcribe to RNA
2. Transfect RNA (Electroporation)
3. Grow virus in Vero cell culture
4. Envelope proteins are JE
5. Replicative ‘engine’ is YF 17D
History of ChimeriVax™-JE (Imojev®)

1989
YF infectious clone (Rice)

1991
First inter-typic chimera (DEN) (Bray, Lai)

1996
YF/JE chimera (Chambers)

1997
Acambis initiates project

2000
Phase 1 initiated

1998
PMC license

2005
Phase 3 initiated

2010
Approval Australia, Thailand
SA14-14-2 Mutations

YF 17D Mutations

Non-structural YF 17D

C prM-E SA14-14-2

Non-structural YF 17D

NS1\textsubscript{307}

NS2\textsubscript{A}\textsubscript{61, 110, 115, 126}

NS2\textsubscript{B}\textsubscript{109}

NS3\textsubscript{485}

NS4\textsubscript{A}\textsubscript{146}

NS4\textsubscript{B}\textsubscript{95}

NS5\textsubscript{836, 900}

4 nt

5'NCR

SA14-14-2 Mutations

I

III

Stem-anchor

138

279

315

439

107

176

177

227

264

274
Attenuation of a chimeric vaccine (ChimeriVax™-JE)

YF 17D

5’ C M E NS1 NS2a NS2b NS3 NS4a NS4b NS5 3’

Nakayama

YF 17D

5’ SA14-14-2 3’

YF/JE (SA14-14-2)

JE (SA14-14-2)

YF/JE (Nakayama)

JE (Nakayama)

YF 17D

Neurovirulence weanling mice i.c.

4 log_{10} PFU

Chambers et al J Virol 1909;73:3095
Guirakhoo et al Virology 1999;257:363
Attenuation of a chimeric vaccine (ChimeriVax™-JE)

\[
\begin{array}{cccccccc}
C & M & E & NS1 & NS2a & NS2b & NS3 & NS4a & NS4b & NS5 \\
\end{array}
\]

5’ Nakayama YF 17D 3’

5’ SA_{14-14-2} YF 17D 3’

prM E

- E107 L→F
- E138 E→K
- E176 I→V
- E279 K→M
- E315 A→V
- E279 K→R

Fusion peptide

Leu 107
Reversion at 3 or more specific sites in E required for neurovirulent phenotype

- E107, E138, E176
- E107, E138, E279
- E138, E176
- E107, E176
- E439 R->K
- E315 V->A
- E279 M->K
- E176 V->K
- E138 K->E
- E107 F->L
- YF/JE (SA14-14-2)
- YF/JE (Nakayama)

Mortality %

Learnings No. 3

• Chimerization process *per se* attenuates virulence
• Chimera of two empirically derived attenuated vaccines (SA14-14-2 and YF 17D) yielded a suitable candidate
• E gene principal determinant of virulence/attenuation
 – Insertion of highly attenuated prM-E from SA14-14-2 abrogated YF 17D neurotropism
• At least 3 E gene a.a. mutations produced neuroattenuation
• At least 3 reversions required to restore neurovirulence
Learnings No. 4

• YF 17D serves as a benchmark for attenuation of new flavivirus vaccines
 – Quantitative measures in comparative studies of neurotropism

<table>
<thead>
<tr>
<th>Mouse IC</th>
<th>Monkey IC</th>
<th>Human SC</th>
</tr>
</thead>
<tbody>
<tr>
<td>-Death, encephalitis</td>
<td>Standardized YF neurovirulence test (histopath scores)</td>
<td>Neurotropic adverse event incidence 0.8 per 100,000</td>
</tr>
<tr>
<td>-Dose response/survival</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-8 day old mouse model</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• However, attenuation of viscerotropism is more difficult to assess
 – Monkey viremia levels used as a biomarker, but no data to show correlation with YEL-AVD
Comparative biology YF 17D and ChimeriVax™-JE

Antibody
PRNT50, day 30 (human)

Viremia
Cyno mean peak (PFU/mL)
Human mean peak PFU/mL

Neurovirulence
Mouse (8d) log10 icLD50
Vicerotropism markers in inter-strain chimeras

Asibi/DEN4 prM-E: Not ill, no liver path
Asibi/17D prM-E: Not ill, mild liver path
17D/Asibi prM-E: Not ill, no liver path
Asibi: Death, hepatitis, ↑ proinflam. cytokines

Viremia Genome Copies/mL

McGee et al JID 2008;197:692
Vicerotropism markers in inter-strain chimeras

Inference of the study:

Chimerization of YF 17D by insertion of a heterologous prM-E sequence from a less hepatotropic virus (JE, dengue) will reduce likelihood of serious adverse events.
Growth of YF 17D, ChimeriVax-DEN, and wt DEN in human liver cells (HepG2)-similar in THLE-3

Brandler et al. AJTMH 2005;72:74
Immunogenicity of graded doses of ChimeriVax™-JE, human subjects

Monath et al J Infect Dis 2003;188:1213
ChimeriVax™-JE Phase 3– Statistical non-inferiority endpoints met
Efficacy Population (N=408/group)

Torresi et al. Vaccine 2010;78:7993
T cell responses in humans
ChimeriVax™-WN
WN E peptide pool stimulation

Monath et al PNAS 2006;103:10823
Learnings No. 3

- A single dose of live chimeric vaccine can provide superior immunity to multiple doses of inactivated antigen
- Rapid, durable N antibody response
- T cell responses to both the donor (E gene) and backbone
- Strain differences in donor E gene modulate antigenicity and neutralization
 - Other examples
 - YF 17D neutralization > YF Asibi
 - JE Beijing-1 > Nakayama
 - Den2 (American) > Den2 (Asian)
 - EDIII specific immunization
 - Implications for:
 - Selection of strains as vaccine candidates
 - Restricted epitope constructs (e.g. gene shuffling, EDIII)
 - Design of non-inferiority trials where two vaccines incorporate different strains
Dengue Vaccines in Development

<table>
<thead>
<tr>
<th>Phase 3 (monovalent)</th>
<th>Phase 3 (tetravalent)</th>
<th>Phase 2</th>
<th>Phase 1</th>
<th>Phase 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>sanofi pasteur (Acambis) ChimeriVax</td>
<td>GSK (WRAIR) LAV (empiric)</td>
<td>NIAID LAV (molec)+Chimeric</td>
<td>Inviragen (CDC) LAV+Chimeric</td>
<td>Merck (Hawaii BioTech) Subunit</td>
</tr>
</tbody>
</table>
Live Dengue Vaccine Candidates

Sanofi Pasteur

YF 17D

DEN1

YF 17D

DEN2

YF 17D

DEN3

YF 17D

DEN4

NIH

DEN1 Δ30

DEN2 Δ30

DEN3 Δ30,31

DEN4 Δ30-200,201

Inviragen

DEN2 PDK53

DEN3 PDK53

DEN4 PDK53

Alternate DEN 3 and 4 candidates under evaluation

Attenuated (Mahidol)
sanofi pasteur ChimeriVax™-DEN
Unmodified dengue prM-E

PUO359 (Thailand, human, 1980)

PUO218 (Thailand, human, 1980)

PaH881/88 (Thailand, human, 1988)

1228 (Indonesia, human, 1978)
Monovalent ChimeriVax™-DEN2, clinical data

Viremia
- ChV-DEN2 3 log: 1.6 log
- ChV-DEN2 5 log: 1.8 log
- YF-VAX® 5 log: 2.1 log

N antibody
- ChV DEN2 (3 log): 100%*
- ChV DEN2 (5 log): 100%

* Seroconversion rate

Guirakhoo et al. Hum Vacc 2006;2:60 and Acambis Protocol H-050-001
Viremia and antibody in human subjects, tetravalent ChimeriVax™-DEN (4 \(\log_{10}\) PFU of each virus) or YF-VAX®

These results were anticipated from the experience with LAV

Viremia

Day after inoculation

Day 30

N antibody Day 30

* Seroconversion rate
Interference between dengue serotypes in NIAID dengue vaccine tetravalent mixture

1 dose, antibody to homologous virus, 30 days

Monovalent (separate trials)

<table>
<thead>
<tr>
<th>PRNT<sub>50</sub></th>
<th>DEN1Δ30</th>
<th>DEN2/Δ30</th>
<th>DEN3-3'Δ4Δ30</th>
<th>DEN4Δ30</th>
</tr>
</thead>
<tbody>
<tr>
<td>512</td>
<td>95%*</td>
<td>100%</td>
<td>80%</td>
<td>93%</td>
</tr>
<tr>
<td>256</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tetravalent

<table>
<thead>
<tr>
<th>PRNT<sub>50</sub></th>
<th>DEN1Δ30</th>
<th>DEN2/Δ30</th>
<th>DEN3-3'Δ4Δ30</th>
<th>DEN4Δ30</th>
</tr>
</thead>
<tbody>
<tr>
<td>512</td>
<td>60%*</td>
<td>40%</td>
<td>45%</td>
<td>95%</td>
</tr>
<tr>
<td>256</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Seroconversion rate

Learnings No. 5
Interference

• High rates of seroconversion and high antibody levels when a single dose of monovalent vaccine (titer 3-4 logs) given to seronegative recipients
• When 4 vaccines mixed, antibody production lower and some serotypes predominate while others are missed
• Interference can be modified somewhat by increasing dose of less active components
• Same set of observations were historically seen for OPV
Mitigating Interference

Live flavivectors
- Multiple doses (interval allowing subsidence of innate and cross-reactive immunity)
- Balanced dose formulation
- Separate anatomical sites
- Heterologous pre-immunity (e.g. YF)
- Shuffled E gene

Other approaches
- Single live vector, tetravalent E or EDIII (Ad5, measles)
- Single cycle vector, tetravalent or monovalent mixture
- Inactivated viruses
- Subunit antigens
- DNA
- Prime-boost strategies
Multiple Dose Schedule (Live Vaccines)

- Heterologous cross-protection (Sabin) 6 mos.
- Interference (innate immunity)
- Interference, adaptive cross-reactive immunity
- Incomplete take
- ‘Missing’ serotypes take
- wt DEN exposure
- ?Risk of ADE
ChimeriVax™ Tetravalent
Seroconversion after 3 doses at long intervals (0, 4-6, 9-12 mo.), flavivirus naïve adults

![Graph showing seroconversion for different serotypes and all serotypes combined.]
ChimeriVax™ Tetravalent GMT after 3 doses in flavivirus naïve adults
Multiple dose requirement

• **Schedule issues**
 – Endemic market
 • Compliance, schedule different from EPI, potential for ADE
 – Travelers and military require rapid immunization

• **Original antigenic sin**
 – Secondary responses (on boosting) *may be* poor quality (cross-reactive) antibody
 – Vaccine should induce primary response to all serotypes on first dose
Subunit Vaccines
(Merck/Hawaii)

Status, positives
- Truncated E protein secreted from stably transformed Drosophila cells
- Alum or Iscomatrix® adjuvant
- Multiple dose schedule at short intervals
- No interference, tetravalent antibody responses in NHP
- No prM antibodies (ADE)
- Thermostable, liquid

Challenges
- Durability
- Non-neutralizing antibody, ADE
- CD8+ T cell responses
- High dose requirement
- Dose sparing requires investigational adjuvant
- COGs
- Prime-boost strategy required?

Note: Preclinical stage EDIII fusion protein vaccine development (Cuba)
Next Generation Vaccines

• **Major goals:**
 – Improved safety
 – Reduce interference (dengue)
 – Short interval boosting
 – Set immune response to all four dengue antigens on first dose
 – Durable response, strong T cell memory

• **Current approaches:**
 – Single cycle flavivirus
 – Heterologous defective or live vectors (adeno, alpha, measles)
 – DNA launch (single round infectious particles)
 – Inactivated virus with appropriate adjuvant
 – Recombinant VLPs

• **Status:**
 – Early stage, preclinical
Why Do We Need Next Gen Dengue Vaccines?

- Residual risk for second gen dengue vaccines
 - Still early in development
 - Efficacy not established
 - Safety
 - Rash, ALT, neutropenia
 - Rare AEs?
 - ADE, severe dengue?

- Requirement for multiple doses

- Large market opportunity with room for multiple products
Challenges for Next Gen Vaccines

• Clinical development
 – Increasingly difficult after 2nd gen vaccine(s) approved due to ethical issues (placebo controlled trials) and decreasing incidence at established sites

• Regulatory path
 – Licensure based on non-inferiority (seroconversion, GMT) to licensed product (likely to be a live 2nd gen vaccine)

• Showing marketing advantage, differentiation and label claims
Next Generation Live Flavivirus Vaccines

Attributes

• Single cycle ‘pseudoinfectious’ virus or live heterologous vectors
• Potentially higher safety, no progressive infection
• In vivo expression of immunogenic subviral prM-E particles and NS1 with native conformation of epitopes
• Memory, durability, Th1 responses should resemble live vaccines

Questions

• Sufficient antigenic mass and immunogenicity?
• Activation of innate immunity, durability?
• Interference?
RepliVAX™

• Single-cycle flavivirus with most of C gene deleted
• Modified to reduce potential for recombination (mutations in cyclization sequence of 5’ fragment)
• Packaging Vero cell line with non-cytopathic VEE replicon expressing C in trans
• High yields obtained in packaging cell culture
• Particles are infectious, but undergo only a single round of replication in the host
• prM-E and NS1 expressed, SVPs produced
• Not neurovirulent
• Immunogenic in several species
Immunogenicity for Hamsters after a single dose
(historical, not head-to-head)

RepliVAX™-WN

- 5.3 log IP
- 4.6 log IP
- 4.6 log SC
- 5.3 log SC

Widman et al Vaccine 2009;27:5550

ChimeriVax™-WN02

- 5.0 log SC
- GMT 3880

Acambis IND BB#11241
Non-human Primates Immunized with a single SC dose of live, chimeric or single cycle WN vaccines
(Historical, not head to head)

<table>
<thead>
<tr>
<th>PRNT50 Day 28-30</th>
<th>ChimeriVax™-WN</th>
<th>RepliVAX™-WN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cyno 5 log</td>
<td>Baboon 5 log</td>
</tr>
<tr>
<td>Seroconversion</td>
<td>100%</td>
<td>90%</td>
</tr>
<tr>
<td></td>
<td>Rhesus 4 log</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>Rhesus 6 log</td>
<td></td>
</tr>
</tbody>
</table>

3735 (GMT)

Live Heterologous Vectors

- Large foreign gene carrying capacity
- Multiple foreign genes, tetravalent dengue constructs
 - Avoid interference seen with mixed monovalent vectors
- *Theoretical* improved design (EDIII based vectors)
 - Eliminate cross-reactive epitopes on prM and EDI and II (ADE)

![Diagram of viral epitopes]

- Improved safety
 - Single cycle vectors (e.g. Ad5, alpha replicon)
 - Live vectors based on licensed vaccines (measles)

Wahala et al PLoS Pathog 2010;6:e1000821
Ad5 Vectored Vaccine

• GenPhar (US)
 – Defective Ad5 with full-length E genes of DEN serotypes (sequence 2,4,1,3)
 – NHP developed high antibody titers (PRNT\textsubscript{50} 10^3) to all 4 serotypes, balanced response
 – Booster response (2 months) in face of anti-Ad5 aby
 – Protected against \textit{wt} DEN challenge

• Int’l Centre Genetic Engineering & Biotechnology (India)
 – Ad5 with DIII of 4 serotypes prime, DNA boost
 – Mice developed moderate N antibody responses to 4 serotypes
 – No effect of anti-vector immunity

Khanam et al Vaccine 2009;27:6011
Measles as a Vector
Inst. Pasteur; Themis

- Vector safe and immunogenic for infants (long clinical experience), N titers ≈1000
- Manufactured at very large scale, low cost
- Tetravalent, single DEN vector (no interference)
- “Serotype-specific” neutralization domains (EDIII)

Brandler et al. Vaccine 2010;28:6730
Measles as a Vector

• Questions/challenges
 – EDIII antigen target (human EDIII contains cross-reactive epitopes and contributes little to neutralization in natural dengue (Wahala, 2009; Midgley, 2010)
 – Immunogenicity sufficient, seroprotection level achieved?
 – Anti-vector immunity?
 – Dose requirements different from measles?

• So far, only CD46-IFNAR mouse data available
 – Dengue N antibody titers following 2 doses are very low
 • Mice lack IFN α/β receptors
 – However, previous work with measles-HIV (monkeys) is encouraging
Alphavirus Replicon Construct

Manufacturing Process

Replicon and RNA or DNA helpers are introduced into certified VERO cells by electroporation.

Virus-like replicon particles (VRP) harvested after 18-24 hours incubation (*Single cycle production*)

Replicon RNA

- Packaging Signal
- 26S promoter

Split Helper

- DEN prM-E
- Capsid
- glycoprotein

RNA or DNA expression systems; transformed cells

Single-cycle vaccine particles, containing the replicon RNA
Leaning No. 6

Many factors determine vaccine immunogenicity

- Attenuation, replication, antigenic mass
- Anatomical/cell tropism, antigen duration
- Antigenic structure, conformation
- HLA and cytokine/cytokine receptor gene polymorphisms
- Innate immunity and specific pathways activated
- Previous immunity to related viruses and original antigenic sin
- Interference and vaccine interactions
How much immunity is required?

- What is the level of antibodies corresponding to protection?
- Established for JE and TBE vaccines only \((\text{PRNT}_{50} \geq 10)\)
- Seroprotection for viscerotropic viruses (YF, DEN) may be 2 to 10-fold higher
- Dengue problematic because of cross-reactive epitopes and difficulty determining homotypic and heterotypic responses
 - Dengue infections occur in subjects with N antibody to the infecting serotype and strain
- Regulatory issues: use of immune correlates for vaccines where field efficacy cannot be shown (WN, YF)
Neutralization following natural infection with dengue is associated with PRNT$_{50}$ titers >100

Kraus et al J Clin Micro 2007;45:3777

Wahala et al Virology 2009;392:103
Cross-reactive N antibody does not protect against DF

Reference strain Patient’s isolate

Endy et al JID 2004;189:990
Immune correlates

<table>
<thead>
<tr>
<th>Syndrome</th>
<th>Virus</th>
<th>Correlate of protection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PRNT</td>
</tr>
<tr>
<td>Encephalitis</td>
<td>Japanese encephalitis</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Tick-borne encephalitis</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Poliomyelitis</td>
<td>10</td>
</tr>
<tr>
<td>Hepatitis</td>
<td>Yellow fever</td>
<td>20-40</td>
</tr>
<tr>
<td></td>
<td>Hepatitis A</td>
<td>20</td>
</tr>
<tr>
<td>Febrile rash</td>
<td>Dengue</td>
<td>?>100</td>
</tr>
<tr>
<td></td>
<td>Measles</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>Smallpox</td>
<td>32</td>
</tr>
</tbody>
</table>
Vaccine Profiles

<table>
<thead>
<tr>
<th></th>
<th>Safety</th>
<th>Immune-genicity</th>
<th>Durability</th>
<th>T cells</th>
<th>Single dose</th>
<th>No interference</th>
<th>No adjuvant</th>
<th>Low COGS</th>
<th>Thermostable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Live, flavivector</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++*</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>RepliVAX®</td>
<td>+++</td>
<td>++</td>
<td>++</td>
<td>+++</td>
<td>++</td>
<td>?</td>
<td>++</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Live, non flavivector</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Inactivated</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Subunit</td>
<td>+++</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
</tr>
</tbody>
</table>
| **DNA (incl. single round)** | +++ | EP*** | +++ | +++ | ++ | +++ | +++ | +++ | +++ | ** Except dengue**
| **May be compromised by anti-vector immunity**
| **Electroporation**
Thank you!