Prospects for Vaccination Against Congenital Cytomegalovirus Infection

Mark R. Schleiss
Center for Infectious Diseases and Microbiology Translational Research
(www.cidmtr.umn.edu)
University of Minnesota
Department of Pediatrics
2001 6th Street SE, Minneapolis, MN, USA
June 17, 2009
Congenital CMV Infection

- Most common congenital viral infection in the developed world
- Incidence of congenital infection: 0.5-2% of all pregnancies
- A major cause of mental retardation, developmental disabilities, hearing loss
- Compelling need for a vaccine (Stratton et al., 1999)
CMV Vaccines: Strategies

- Envelope glycoproteins: humoral targets
- Tegument proteins and regulatory proteins: CMI and CTL targets
- Expression techniques: adjuvanted recombinant expression systems, vectored approaches
- Live, attenuated vaccines
Animal Models are Necessary to Study CMV Vaccines

- CMVs highly species-specific
- Murine CMV - no transplacental transfer
- Rat CMV - transplacental transfer reported but no vaccine studies reported to date
- Rhesus CMV - highly relevant to humans
- Guinea Pig CMV - only rodent model of transplacental transfer to placenta and fetus
Guinea Pig Cytomegalovirus is Transmitted \textit{In Utero}, Leading to Disease in Newborn
Evidence that Preconception Vaccination Protects the Fetus in the Guinea Pig Model

- Live, attenuated vaccines (Bia et al., 1980)
- Adjuvanted native glycoprotein vaccines (Harrison et al., 1995; Bourne et al., 2001)
- Passive antibody (Bratcher et al., 1995; Chatterjee et al., 2001)
- Are recombinant expression technologies effective vaccines in guinea pig model?
- GPCMV genome: ~232 kbp
- Strong conservation of CMV genes important in protective immunity
- Putative vaccine candidates in GPCMV model
Table 1. Pup mortality after maternal inoculation with guinea pig cytomegalovirus

<table>
<thead>
<tr>
<th>Group</th>
<th>Dams</th>
<th>Pups</th>
<th>Dead pups</th>
<th>Mortality %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>10</td>
<td>39</td>
<td>13</td>
<td>33</td>
</tr>
<tr>
<td>UL83 vaccine</td>
<td>11</td>
<td>38</td>
<td>13</td>
<td>34</td>
</tr>
<tr>
<td>gB vaccine, ELISA titer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>3.4 log</td>
<td>4</td>
<td>13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>≥3.4 log</td>
<td>8</td>
<td>28</td>
<td>14</td>
<td>50</td>
</tr>
<tr>
<td>Overall</td>
<td>12</td>
<td>41</td>
<td>14</td>
<td>34</td>
</tr>
</tbody>
</table>

Data are no. of guinea pigs, unless otherwise noted. gB, glycoprotein B.

P < .05, vs. control

Table 2. Vertical transmission rates of guinea pig cytomegalovirus (GPCMV) and viral load analyses of infected pups, after third-trimester maternal GPCMV challenge.

<table>
<thead>
<tr>
<th>Tissue virus load, mean ± SD, log genomes/mg of tissue</th>
<th>Group</th>
<th>Liveborn Litters, no.</th>
<th>GPCMV-infected pups, no. (%)</th>
<th>Liver</th>
<th>Spleen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>pups, no.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>8</td>
<td>26</td>
<td>20 (77)</td>
<td>3.8 ± 1.9</td>
<td>4.0 ± 2.0</td>
</tr>
<tr>
<td>UL83 vaccine</td>
<td>8</td>
<td>25</td>
<td>17 (68)</td>
<td>1.4 ± 1.4</td>
<td>1.3 ± 0.9</td>
</tr>
<tr>
<td>gB vaccine</td>
<td>10</td>
<td>27</td>
<td>11 (41)</td>
<td>1.8 ± 1.4</td>
<td>1.3 ± 0.5</td>
</tr>
</tbody>
</table>

NOTE: Liveborn pups were killed within 72 h of delivery, and liver and spleen were evaluated for presence of GPCMV DNA by quantitative competitive polymerase chain reaction.

a P < .05, vs. control (Fisher’s exact test).
b P < .005, vs. control (Student’s t test).
c P < .01, vs. control (Student’s t test).
Adjuvanted Recombinant gB Vaccines in the GPCMVM Model

- Baculovirus expression system (Schleiss et al., 2004)
- Recombinant gB adjuvanted with Freund’s adjuvant showed superior immunogenicity and protection compared to alum
- MPL-based adjuvants superior to Freund’s adjuvant
 - Equivalent ELISA titers following three-dose vaccine series
 - Superior protection against pup mortality
 - Equal magnitude of reduction of maternal viremia
Subunit Glycoprotein Vaccines: Other Candidates

- gM/gN complex
- gO/gH/gL complex
- UL128-131 proteins
<table>
<thead>
<tr>
<th>Vaccine/Adjuvant</th>
<th>Pup Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td>Litters</td>
</tr>
<tr>
<td>Negative Control</td>
<td>14</td>
</tr>
</tbody>
</table>
| gB/AS02V | 10 | 4/39 (10%)^
| gB/AS01B | 9 | 8/34 (24%)* |
| gB/FreundŐs | 10 | 12/33 (36%)|
| **Overall Mortality in Vaccine Group** | 24/106 (23%) |

Maternal DNAemia at Day 10 Post-Challenge in Vaccine and Control Groups

p<0.00001 vs. control

*p<0.0005 vs. control

† p<0.05 vs. control

@ p<0.05 vs. FreundŐs adjuvant
- Pass et al, NEJM, 2009
- Three dose series of HCMV gB
- Efficacy of 50% against infection
<table>
<thead>
<tr>
<th>Mother-Infant Parity</th>
<th>Maternal Time of Seronegativity</th>
<th>HIG Administered</th>
<th>Possible Ultrasonographic Evidence of Fetal Involvement</th>
<th>Signs and Symptoms at Birth</th>
<th>Disease at ≤2 Yr of Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7–12</td>
<td>23 IV</td>
<td>Ventriculomegaly, ascites, hepatospleomegaly</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>2</td>
<td>20–24</td>
<td>33 IV</td>
<td>IUGR</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>3</td>
<td>11–25</td>
<td>33 IV</td>
<td>Pyelecasis, megaloureter</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>4</td>
<td>4–11</td>
<td>21 IV</td>
<td>Hepatic echodensities</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>25 IV</td>
<td>IUGR</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>6</td>
<td>10–21</td>
<td>29 IV</td>
<td>Ventriculomegaly, periventricular echodensities</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>7</td>
<td>9–16</td>
<td>28 IV</td>
<td>IUGR</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>8</td>
<td>11–15</td>
<td>30 IV</td>
<td>IUGR, pyelecasis, intestinal echodensities</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>9</td>
<td>10–18</td>
<td>23 IV</td>
<td>IUGR, microcephaly, periventricular echodensities, ventriculomegaly, hepatospleomegaly</td>
<td>IUGR, microcephaly, periventricular calcifications, lissencephaly, thrombocytopenic purpura</td>
<td>Severe mental and motor retardation: not able to speak or stand</td>
</tr>
<tr>
<td>10</td>
<td>8–21</td>
<td>27 IV</td>
<td>IUGR</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td>24 IV</td>
<td>IUGR</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>12</td>
<td>4–11</td>
<td>23 IV</td>
<td>IUGR</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>13</td>
<td>8–19</td>
<td>22 IV</td>
<td>Ventriculomegaly, intestinal echodensities</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>14</td>
<td>10–15</td>
<td>18 IV</td>
<td>Periventricular and intestinal echodensities, ventriculomegaly</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>15</td>
<td>≤9</td>
<td>23 IV</td>
<td>Intestinal and hepatic echodensities</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>16</td>
<td>11–19</td>
<td>None</td>
<td>IUGR</td>
<td>IUGR, seizures (CMV DNA in cerebrospinal fluid), pneumonia, encephalopathy, atresia</td>
<td>Seizures, hypoaesthesia, right strabismus and right arm hypoplasia, ventriculomegaly and left cerebral hypoplasia</td>
</tr>
<tr>
<td>17</td>
<td>≤8</td>
<td>None</td>
<td>IUGR, microcephaly, ventriculomegaly, intestinal echodensities, hepaticomegaly</td>
<td>IUGR, microcephaly, periventricular calcifications, pyelecasis, liver disease, thrombocytopenic purpura, postnatal death</td>
<td>Not applicable</td>
</tr>
<tr>
<td>18</td>
<td>7</td>
<td>None</td>
<td>Ascites, hepatomegaly</td>
<td>Intraventricular death, CMV inclusion in brain, kidneys, liver, and adrenal glands</td>
<td>Not applicable</td>
</tr>
<tr>
<td>19</td>
<td>5</td>
<td>None</td>
<td>IUGR</td>
<td>IUGR, periventricular calcifications, liver disease, thrombocytopenic purpura</td>
<td>Mental and motor retardation (IQ <70); able to speak a few words, not able to walk</td>
</tr>
<tr>
<td>20</td>
<td>18–26</td>
<td>None</td>
<td>IUGR</td>
<td>IUGR, cerebellar atrophy, ventriculomegaly, hemiparesis</td>
<td>Mental retardation (IQ <70); able to speak a few words; severe left hemiparesis (persistent at 8 yr); seizures</td>
</tr>
<tr>
<td>21</td>
<td>≤9</td>
<td>Ventriculomegaly</td>
<td>Microcephaly, periventricular calcifications, choroiditis, microcephaly, bilateral hypoplasia</td>
<td>Microcephaly, periventricular calcifications, cerebral and cerebellar atrophy, retinopathy</td>
<td>Mental retardation (IQ <70); able to speak a few words; unilateral sensorineural hearing loss (right ear, 30 db; left ear, 50 db)</td>
</tr>
<tr>
<td>22</td>
<td>5–14</td>
<td>None</td>
<td>Periventricular and hepatic echodensities</td>
<td>Periventricular and hepatic calcifications, cerebral and cerebellar atrophy, retinopathy</td>
<td>Mental and motor retardation: able to speak a few words, not able to walk</td>
</tr>
</tbody>
</table>

* HIG denotes hyperimmune globulin, IV intravenous, IIA intraamniotic, IUGR intrauterine growth restriction, and IC intra-unbiliical cord.
Does UL83 (pp65) Homolog Provide Protection Against Congenital CMV Infection and Disease in Guinea Pig Model?

- Clone and express GPCMV UL83 (pp65) homolog
- Utilize ‘vectored’ approach: Venezuelan Equine Encephalitis Replicon “Virus-Like Particles” (VRPs)
- Vaccination pre-pregnancy in guinea pigs
 - Immune responses
 - Viremia post-CMV challenge
 - Pup outcomes
 - Congenital infection rates
Replicon RNA

- Packaging Signal
- 26S promoter
- 5' nsP1 nsP2 nsP3 nsP4 GP83 3'

Helper RNAs

- 26S
- 5' Capsid 3'
- 26S glycoprotein
- 5' Glycoproteins 3'

Attenuating mutations

Virus-like Replicon Particle

Capsid protein
- VRP-GP83 or control vaccine (flu HA) administered subcutaneously, 3 doses, 2-month intervals, 1×10^6 IU
- ELISA and Western Blot assay
- T-cell analyses
- Breed animals and challenge with salivary-gland passage GCPMV in early 3rd trimester of pregnancy
- Compare maternal and pup outcomes
 - Pup mortality
 - DNAemia
Pregnancy Outcomes (Pup Mortality and Pup Weights) after Challenge

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Litters</th>
<th>Dead/Total (%)</th>
<th>Mean Pup Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRP-GP83</td>
<td>10</td>
<td>4/32 (13%)*</td>
<td>118 g</td>
</tr>
<tr>
<td>VRP-HA</td>
<td>8</td>
<td>12/21 (57%)</td>
<td>96 g</td>
</tr>
</tbody>
</table>

* Significantly different from the VRP-HA vaccine group (p<0.001, Fisher's exact test)

Significantly different from the VRP-HA vaccine group (p<0.05, Student's t-test)
PCR Analyses of Pup Tissues

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Litters Tested</th>
<th>PCR+/Total</th>
<th>Transmission Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRP-GP83</td>
<td>6</td>
<td>8/17</td>
<td>47%*</td>
</tr>
<tr>
<td>VRP-HA</td>
<td>6</td>
<td>11/13</td>
<td>85%</td>
</tr>
</tbody>
</table>

* p=0.057 compared to the VRP-HA vaccine group, Fisher’s exact test
DNA Vaccines in the GPCMV Model: BAC Vaccine

- Screen colonies from random transposon library of GPCMV BACmids
- Assess whether viral DNA purified from *E. coli* as a BAC plasmid is immunogenic as a DNA vaccine
- Introduction of a premature stop codon in GP48 gene (*UL48* homolog) ORF ensures that immune response is not due to reconstitution of replicating virus *in vivo*
- Vaccination produced overall serum titers comparable to those observed in natural infection
Vaccine Group

<table>
<thead>
<tr>
<th>Vaccine Group</th>
<th>Live</th>
<th>Dead</th>
<th>Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (n=12 Dams)</td>
<td>12</td>
<td>23</td>
<td>66%</td>
</tr>
<tr>
<td>GP48 BAC Vaccine (n=10 Dams)</td>
<td>24</td>
<td>10</td>
<td>29%*</td>
</tr>
<tr>
<td>≥ 2.5 log_{10} GPCMV ELISA Titer (n=5 litters)</td>
<td>16</td>
<td>2</td>
<td>11%</td>
</tr>
<tr>
<td>< 2.5 log_{10} GPCMV ELISA Titer (n=6 litters)</td>
<td>8</td>
<td>8</td>
<td>50%</td>
</tr>
</tbody>
</table>

* p<0.005 vs. control group

f p<0.03 vs. high titer group

Schleiss et al., 2006
Live, Attenuated Vaccine Design in the GPCMV Model

- Can live, attenuated vaccines be designed and tested for “proof-of-concept” in the guinea pig model with the aims of:
 - Improved immunogenicity?
 - Decreased reactogenicity?
- Class I homologs
- MIP 1-alpha homolog
Hypothesis: that creating a live attenuated vaccine strain from which some or all NK evasion genes have been removed will increase activation of NK cells, therefore increasing primary T-cell activation, which will generate a more potent long-term memory response.
Preconceptual vaccination with recombinant virus deleted of NK evasins confers protection against congenital CMV infection and disease in newborn pups.

<table>
<thead>
<tr>
<th>Vaccine group</th>
<th>Live</th>
<th>Dead</th>
<th>Mortality (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (n = 12 dams)</td>
<td>26</td>
<td>20</td>
<td>43</td>
</tr>
<tr>
<td>WT (n = 7 dams)</td>
<td>20</td>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td>3DX (n = 7 dams)</td>
<td>21</td>
<td>6</td>
<td>22</td>
</tr>
<tr>
<td>WT + 3DX (n = 14 dams)</td>
<td>41</td>
<td>12</td>
<td>22.6*</td>
</tr>
<tr>
<td>Preconception infection (GPCMV seropositive; n = 5 dams)</td>
<td>10</td>
<td>4</td>
<td>29</td>
</tr>
</tbody>
</table>

* p < 0.02 vs. control Fisher's exact test.
CC CHEMOKINE
EcoRI
CMV MIP
EcoRI
EcoRI
Xba I EcoRI EcoRI

eGFP/gpt

WT 545

HEX HEX HEX
Median Hearing Levels over time by Group

Schraff et al., 2007
What are the Key Correlates of Protective Immunity for the Fetus?

- Magnitude of neutralizing antibody response correlated with reduced pup mortality and decreased congenital transmission
- Adjuvant important in protection
- T-cell target (GP83) is protective
- No strategy eliminates maternal DNAemia or prevents transmission
- Need to include multiple targets in single vaccine?
Acknowledgements

- CIDMTR/University of Minnesota
 - Alistair McGregor
 - Yeon Choi
 - Juan Lacayo
 - Jodi Anderson
 - Janine Gessner
- VCU
 - Michael McVoy
 - Megan Reeves
- GSK
 - Marc Van-Damme
- COH
 - Don Diamond
 - Zhongde Wang
- AlphaVax
 - Jeff Chulay
 - Jonathan Smith
 - Jon Rayner
- Sanofi-Pasteur
 - Dominique Schulz
 - Pascal Chaux
- Vical
 - Ron Moss
- Cincinnati Children’s Hospital
 - Dan Choo
 - Scott Schraff

NIAID, NICHD, March of Dimes