Historical and Clinical Background on Cutaneous Vaccination

Bruce G. Weniger, MD, MPH, Centers for Disease Control and Prevention

Meeting on Intradermal Immunization: An Alternative Route for Vaccine Administration

- Potential advantages; nomenclature
- Historical usage and methods
- Classical intradermal (ID) à la Mantoux
- Jet injectors, abandoned and resurrected
- New methods for ID vaccination
- Clinical aspects
- Research questions for ID delivery
- Promising methods for cutaneous delivery
Proven and Theoretical Advantages of Current and Future Cutaneous Vaccination - 1

- Minimal invasiveness
 - Less serious unanticipated adverse events than other routes?
 - Oral - e.g., intussusception (Rotashield®, Wyeth)
 - Intranasal - e.g., Bell’s palsy (Nasalflu®, Berna)
 - Intramuscular/Subcutaneous injection - abscess, nerve injury, hematoma
 - Local adverse reactions easier to monitor and treat?
 - Less dependent on patient cooperation to administer
 - Think children: squirming, unable to swallow capsules, actuate inhalers

- Relatively sure and certain delivery
 - Gold standard: intramuscular (IM) and subcutaneous (SC) via needle-syringe (N-S)
 - Oral delivery - spitting out or vomiting
 - Intranasal/respiratory delivery - sneezing or coughing
 - Exception: improper Mantoux method for classical intradermal (ID) injection

- Needle-free delivery
 - Reduce risks and costs of sharps in medical waste disposal stream
 - Exception: Mantoux method for classical ID

Proven and Theoretical Advantages of Current and Future Cutaneous Vaccination - 2

- Dose-sparing ability (documented for classical ID)
 - Enhanced or equivalent immune response for many antigens compared to IM and SC
 - Protect larger populations with scarce or expensive vaccines

- Large surface area for simultaneous vaccination of competing antigens

- Disadvantages
 - Difficult to perform Mantoux method of classical ID injection
 - Local reactions from irritating vaccine components? (e.g., some adjuvants)
 - High cost of newer patented technologies
Inconsistent Nomenclature

Various terms for putting antigen into or onto the skin:

<table>
<thead>
<tr>
<th>Prepositional prefix</th>
<th>Adjectival root</th>
<th>Noun</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epi…</td>
<td>…cutaneous …</td>
<td>…vaccination</td>
</tr>
<tr>
<td>Endo…</td>
<td>Cutaneous …</td>
<td>…immunization</td>
</tr>
<tr>
<td>Intra…</td>
<td>…dermal …</td>
<td>…delivery</td>
</tr>
<tr>
<td>Per…</td>
<td>Dermal …</td>
<td></td>
</tr>
<tr>
<td>Trans…</td>
<td>…epithelial</td>
<td></td>
</tr>
<tr>
<td>Needle-free …</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patch …</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin …</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topical …</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Latin origin (*cutis* = skin)
Greek origin (*derma* = skin)

Suggested Terminology

Adjectives

- "**Cutaneous**" – All processes that target any part of the skin for delivery of antigen
 - Excludes needles or jets passing through to deposit into fat (SC) or muscle (IM)
- "**Intradermal**" (aka "Classical Intradermal") – A type of cutaneous vaccination in which a bolus of liquid is deposited into the dermis to raise a visible bleb
 - Includes the Mantoux needle method and newer techniques that achieve a similar result

Nouns

- "**Vaccination**" (per Dr. Pasteur to honor Dr. Jenner) – The mechanical process of introducing foreign substances into the body to stimulate an immune response
- "**Immunization**" – The broad field of manipulating the immune system to confer disease protection, including related programs and policies
Historical and Clinical Background on Cutaneous Vaccination

- Potential advantages; nomenclature
 - Historical usage and methods
 - Classical intradermal (ID) à la Mantoux
 - Jet injectors, abandoned and resurrected
 - New methods for ID vaccination
 - Clinical aspects
 - Research questions for ID delivery
 - Promising methods for cutaneous delivery

Smallpox – First “Vaccine”

- Variolation (wild variola virus)
 - Nasal insufflation, circa 1000 AD, China
 - Cutaneous inoculation, 1500s, India
 - Introduction from Asia to Europe, 1700s
 - Cutaneous route remains the standard today
- Vaccination (cross protecting cowpox/vaccinia)
 - Protection after zoonotic cowpox known in 1700s in English cattle and dairy farm communities
 - First intentional prophylactic vaccination 1774
 - Benjamin Jesty, cattle breeder
 - First scientific study and publication 1798
 - Edward Jenner, scientist, country general physician
Early Tools for Cutaneous Smallpox Vaccination

A. Vaccinostyle
B. Rotary lancet
C. Surgical needle

Smallpox mass campaign, New York City, April 1947

- 12 cases (2 fatal) of smallpox
- >5.265 million persons vaccinated in 2 weeks (6.35m total)
- “1,000s” of MDs, RNs
Later Methods for Cutaneous Smallpox Vaccination

- **Multi-use nozzle jet injectors (“MUNJJs”)**
 - Invented in 1950s by U.S. military
 - High-speed devices - 600-1,000 doses/hour
 - Used in mass campaigns 1950s-1990s
 - polio, meningitis, yellow fever, measles, influenza vaccines
 - Used in first half of smallpox eradication program
 - Special intradermal nozzles
 - Mid-1960s – early 1970s
 - Latin America, West Africa
 - Tens of millions of doses of smallpox vaccine
 - Billions of doses administered worldwide

- **Bifurcated needle**
 - Invented 1967 by Benjamin Ruben (Wyeth)
 - Waived royalties for WHO smallpox program
 - Replaced MUNJJs for latter half of eradication
 - Required higher-titer formulation
 - Tines hold 0.0025 mL; most not delivered

Largest Cutaneous Vaccination Campaign in History – Smallpox Eradication

- **Early:** Ped-O-Jet® MUNJJs - South America, West Africa
- **Later:** Bifurcated needles – Asia, Africa, elsewhere
Historical and Clinical Background on Cutaneous Vaccination

✔ Potential advantages; nomenclature
✔ Historical usage and methods
 ● Classical intradermal (ID) à la Mantoux
 ● Jet injectors, abandoned and resurrected
 ● New methods for ID vaccination
 ● Clinical aspects
 ● Research questions for ID delivery
 ● Promising methods for cutaneous delivery

Classical Intradermal (ID) Injection

● “Mantoux” method
 ▪ Simultaneous invention in 1908
 • Felix Mendel (Germany), Charles Mantoux (France)
 ▪ Originally for TB skin testing and vaccination
 • Fine-gauge needle, bevel-up, parallel into skin
 • Fluid bolus below basement membrane
 ▪ Advantages
 • Uses existing, off-the-shelf vaccines
 • Enhanced immune response permits dose-sparing
 ▪ Disadvantages
 • Requires training, skill, time, needle dangers
 • Local reactions from irritating ingredients
Historical and Clinical Background on Cutaneous Vaccination

✔ Potential advantages; nomenclature
✔ Historical usage and methods
✔ Classical intradermal (ID) à la Mantoux
 • Jet injectors, abandoned and resurrected
 • New methods for ID vaccination
 • Clinical aspects
 • Promising methods for cutaneous delivery

Jet Injectors for Immunization

• Pressurized liquid via tiny orifice (~0.15mm) squirts path into tissues
• 1860s: Technology invented in France
• 1940s: Single-use devices for insulin and other drugs
• 1950s: adapted for high-speed vaccination mass campaigns
 ■ Multi-use-nozzle jet injectors (MUNJIs)
 ■ Many manufacturers

Aquapuncture device
Galante et Cie.

Hypospray® single patient device, R.P. Scherer Corp.

Hypospray® MUNJI
Types of Multi-use-nozzle Jet Injectors (MUNJIs)

Most fill from multi-dose vial attached “on-tool”

- Ped-O-Jet
- Med-E-Jet
- DermoJet
- Imo-Jet
- Sicim
- Vaccejet
- BIP-4
- BIP-100
- AdvantaJet

Single-dose “off-tool” filling:

- Hypospray Professional (L) & K3 (R) models

Ped-O-Jet® MUNJI Intradermal Nozzle

- 45° angle of injection
- Recessed to create air gap between skin and orifice
- Hundreds of millions of intradermal doses
 - smallpox
 - yellow fever (FNV)
 - some BCG
- Spacer on IM nozzle also works
Historical and Clinical Background on Cutaneous Vaccination
Bruce G. Weniger, MD, MPH, Centers for Disease Control and Prevention
Intradermal Immunization: An Alternative Route for Vaccine Administration

Three Decades of Safety Concerns over Multi-use-nozzle Jet Injectors (MUNJIs)
- 1970s onwards – growing body of evidence for cross-contamination between vaccinees
 - Bench laboratory, animal transmission models, epidemiologic surveys
- 1985 - large hepatitis B outbreak
 - Weight loss clinic, Long Beach, CA
 - Implicated Med-E-Jet® as mode of spread
 - CDC studies revealed contamination
 - Both Med-E-Jet® and Ped-O-Jet®
- 1990s - Brazil vaccination campaigns
 - Blood detected in average 1% of ejectates
- 2000s – International consultations at CDC and WHO
 - Cannot specify safety evaluation method
 - WHO and CDC recommend against use
- 2007 – Reengineered HSI-500® MUNJI with safety cap
 - Disposable cap to prevent splashback of blood/liquid to nozzle
 - Study in China of HBV carriers (Vaccine 2008;26:1344-1352)
 - Found HBV by PCR in 8% of next ejectate

Disposable-cartridge Jet Injectors (DCJIs)
Filled by end-user from vial, with adaptor, transfer device, or needle:
- Biojector® 2000
- Vitajet®
- Antares Pharma
- Entire device 1-use disposable:
 - The Medi-Jector Choice™
 - Injex®
 - PharmaJet™
 - J-Tip®
 - Others

Some investigational devices intended for manufacturer pre-filling:
- Entire device 1-use disposable
 - Mini-Imojet®
 - Intraject®
 - PenJet™
Investigational Intradermal Spacer on Bioject® 2000 DCJI

- Creates 2 cm gap between nozzle and skin
- Same perpendicular injection and technique as for licensed IM and SC cartridges
- Clinical trials of intradermal delivery
 - cancer, HIV, influenza, lymphoma, malaria, polio

Investigational Vitavax™ DCJI

- Bioject, Inc., Portland, OR (www.bioject.com)
- Manually-wound spring, targeted for developing countries
- Autodisabling color-coded cartridges: IM, SC, ID
Historical and Clinical Background on Cutaneous Vaccination

- Potential advantages; nomenclature
- Historical usage and methods
- Classical intradermal (ID) à la Mantoux
- Jet injectors, abandoned and resurrected
 - New methods for ID vaccination
 - Clinical aspects
 - Research questions for ID delivery
 - Promising methods for cutaneous delivery

BD Investigational Prefilled Intradermal Syringe
- Soluvia™ Micro-delivery System, Becton, Dickinson
- Human version
- 30 gauge needle
 - OD=0.305mm, projects 1.5 mm
 - Clinical trial of influenza
 - Belshe et al. NEJM 2004
 - Investigational ID GSK vaccine (6μg/strain) – good responses
 - Control vaccine: full dose IM of Aventis Fluzone®
 - Exclusive worldwide license to sanofi pasteur for many vaccine indications

Photos courtesy BD
BD Investigational Prefilled Intradermal Syringe

- Soluvia™ Micro-delivery System
- Animal model version
- 34 gauge needle (shown on 1¢ coin)
 - OD = 0.178 mm
 - Sized for animal model studies - mice, rabbits, Cynomolgus monkeys
 - Good responses: anthrax, influenza, Japanese encephalitis vaccines

Historical and Clinical Background on Cutaneous Vaccination

- Potential advantages; nomenclature
- Historical usage and methods
- Classical intradermal (ID) à la Mantoux
- Jet injectors, abandoned and resurrected
- New methods for ID vaccination
- Clinical aspects
- Research questions for ID delivery
- Promising methods for cutaneous delivery
Literature on Intradermal Vaccination

- Smallpox (many, primary route)
- Tuberculosis (BCG) (many, primary route)
- Yellow Fever (primary route, W. Africa 1940s/50s)
- Rabies (117)
- Hepatitis B (≥90)
- Influenza (≥24)
- Polio (IPV) (16)
- Cholera (15)
- Measles (15)
- Typhoid (11)
- Tetanus (6)
- Hepatitis A (5)
- Diphtheria-Tetanus-Pertussis (2: Rossier 1968, Stanfield 1972)
- Tick-borne encephalitis (2: Zoulek 1984, 1986)
- Meningococcal A (1: Gotschlich 1972)
- Tetanus-Diphtheria (1: Wegmann 1976)
- Rift Valley Fever (1: Kark 1985)
- Smallpox-BCG (1: Vaughan 1973)
- Smallpox-Measles (1: Budd 1967)
- Smallpox-Measles-Yellow Fever (1: Meyer 1964)

Summary of Intradermal Immunogenicity Literature for Existing Conventional Vaccines of High Interest

- **Excellent results**
 - Rabies (~117, already widely used ID in developing world)
- **Good results worth pursuing**
 - Influenza (~2 dozen)
 - Polio (IPV) (~16)
- **Poor to mixed results**
 - Hepatitis B (~90)
 - Measles (~15)
- **No data**
 - Polysaccharide vaccines (MEN, PNU, HIB)
 - Exception: Gotschlich 1972 – good results for \(\text{MEN}_{ps-A}\)
POL_{IPV} Intradermal Vaccination

- First studied by Salk in 1953
 - Route abandoned in favor of oil-in-water emulsion SC for adjuvant effect

<table>
<thead>
<tr>
<th>Source</th>
<th>Subjects</th>
<th>Dose / Tissue / Method</th>
<th>Immune Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salk, Pediatrics 1953;12:471-482</td>
<td>Children n=443</td>
<td>Aqueous 0.1 mL x 2 doses 6 w apart ID NS</td>
<td>Type 1: not effective</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Type 2: 100% ≥4-fold rise</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Type 3: not effective</td>
</tr>
<tr>
<td>Salk, JAMA 1953;151:1081-98</td>
<td>Children and adults n=25</td>
<td>Aqueous 0.1 mL x 3 doses 1 w apart ID NS</td>
<td>Type 1: 100% (25/25)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Type 2: 84% (21/25)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Type 3: 96% (24/25)</td>
</tr>
</tbody>
</table>

POL_{IPV} Intradermal Vaccination

- Denmark - ID was standard route mid-1950s
 - 2.3 million persons vaccinated ID 1955-1957
 - 1956 survey
 - 91% of population 9 months – 40 years
 - “Most of them” with 2 doses
 - Von Magnus (1957, 1967): good immune responses in naïves
POL$_{elPV}$ Intradermal Vaccination

<table>
<thead>
<tr>
<th>Source</th>
<th>Subjects</th>
<th>Dose / Tissue / Method</th>
<th>Immune Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nirmal 1998</td>
<td>Immune-naïve infants 6-8w No maternal Ab \dagger</td>
<td>0.1 mL @0,2 m ID NS</td>
<td>1: 100% 2: 100% 3: 100%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.1 mL @0,1,2 m ID NS</td>
<td>1: 100% 2: 100% 3: 100% *</td>
</tr>
<tr>
<td></td>
<td>Immune-naïve infants 6-8w + maternal Ab \dagger</td>
<td>0.1 mL @0,2 m ID NS</td>
<td>1: 87% 2: 68% 3: 96% **</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.1 mL @0,1,2 m ID NS</td>
<td>1: 89% 2: 74% 3: 96% **</td>
</tr>
</tbody>
</table>

* ns: p>0.05 ** ns: p>0.05 † ns: p>0.1

Historical controls: types 1+3 elPV ID > OPVx3, type 2 elPV ID < OPVx5

Historical and Clinical Background on Cutaneous Vaccination

- Potential advantages; nomenclature
- Historical usage and methods
- Classical intradermal (ID) à la Mantoux
- Jet injectors, abandoned and resurrected
- New methods for ID vaccination
- Clinical aspects
 - Research questions for ID delivery
 - Promising methods for cutaneous delivery
Key Research Questions To Address for Intradermal Delivery - 1

- Reactogenicity
 - “Alum”: irritating aluminum salts (hydroxide, phosphate)
 - Currently in killed and subunit vaccines DTP_a, DTP_w, DT, HAV, HBV, $\text{MEN}_{cn-\text{ACYW135}}$, PNU_{cn-7} and Td vaccines
 - Alum being added to H5N1 INF vaccines for dose-sparing booster effect
 - Many early studies do not meet current standards for assessing safety
 - \Rightarrow Will local skin reactions to existing and future adjuvants be tolerable?
 - \Rightarrow Will these two major dose-sparing strategies – ID route and adjuvantanation – be synergistic or antagonistic?
 - \Rightarrow How tolerable in the skin will be Novartis’ MF-59 and GSK’s “AS” adjuvant family (RTS, S, AS02A, etc.)?

Key Research Questions To Address for Intradermal Delivery - 2

- Immunogenicity
 - Current vaccine formulations differ from antigens previously studied; must repeat studies using current trial standards
 - \Rightarrow How will current formulations fare when used in targeted populations?

- Polysaccharide vaccines
 - Expensive, urgently-needed products in the developing world:
 - HIB
 - $\text{PNU}_{cn-7} -11 -13$ etc.
 - MEN_{cn-A}
 - $\text{MEN}_{cn-\text{ACYW135}}$
 - \Rightarrow Can any be delivered ID in economical reduced doses?
Key Research Questions To Address for Intradermal Delivery - 3

- Study design
 - Many ID studies lack a reduced-dose IM or SC control arm, in addition to the full-dose control
 - Must establish that the ID route, not a flat dose-response curve, made the difference
 - Is the intradermal route really dose sparing?
 - Would a reduced dose into the traditional IM or SC compartment work as well as ID?

Historical and Clinical Background on Cutaneous Vaccination

- Potential advantages; nomenclature
- Historical usage and methods
- Classical intradermal (ID) à la Mantoux
- Jet injectors, abandoned and resurrected
- New methods for ID vaccination
- Clinical aspects
- Research questions for ID delivery
- Promising methods for cutaneous delivery
Passive diffusion with or without enhancers
- Mechanical disruption of stratum corneum
- Coated microtines
- Hollow and dissolving microneedle arrays
- Electromagnetic energy
- Sound energy
- Gas-mediated kinetic deposition

Promising Methods for Cutaneous Delivery
- Passive diffusion with or without enhancers
 - Occlusion and hydration
 - Plain water under occlusive patch
 - Bacterial exotoxins
 - Iomai, Inc.
 - Heat-labile enterotoxin of E. coli (LT)
 - Boost elderly influenza response
 - 75% protective efficacy for mod.-sev. travelers diarrhea (ICAAC 2007, ab G-1247A)
 - Cholera toxin
- Other chemicals
 - Acetone rubbing
 - Protein and colloidal carriers
 - Bacterial flagellin
 - Colloidal carriers

"Transcutaneous Immunization (TCI)"
Frech et al (Iomai)
Vaccine 2005;23:946-950
Activated Langerhans cells in Epidermis 48 Hours after Cutaneous Vaccination with E. coli LT

Microphotograph courtesy: IOMAI, Inc.

Promising Methods for Cutaneous Delivery

- Mechanical disruption of stratum corneum
 - Stripping and Abrading
 - Cellophane tape
 - Friction by rubbing
 - Emery, pumice
 - Uncoated microabrasives

OnVax™ “microenhancer array” (MEA)
Becton, Dickinson
Promising Methods for Cutaneous Delivery

- Coated macrotines
 - Longstanding BCG device
- Coated microtines
 - Macroflux® platform (Zosano Pharma)

- Others

Promising Methods for Cutaneous Delivery

- Hollow microneedle arrays
 - Microneedles (Georgia Tech)
 - Micro-Trans™ Microneedle Array Patch (Biovalve)
 - Easy Vax™ DNA Vaccination System (Cytopulse Sciences)
 - Norwood Abbey/MIT
 - Corium (ex P & G)
 - NanoPass
 - Many others

- Dissolving microneedle arrays
 - Georgia Tech
 - Therajekt
 - Many others

McAllister et al.
PNAS 2003;100:13755-60

Fig 2. Hollow microneedles fabricated out of silicon, metal, and glass, imaged by optical and scanning electron microscopy. (a) Straight-sided metal microneedle from a 100-needle array fabricated by lithography onto a polymethyl (200 μm tall). (b) Tip of a tapered, beveled, glass microneedle made by conventional micropipette pulling (300 μm, length shown). (c) Tapered, metal microneedles (300 μm tall) from a 37-needle array made by electrophoretic deposition onto a polymeric mold. (d) Array of tapered metal microneedles (300 μm height) shown next to the tip of a 26-gauge hypodermic needle.
Historical and Clinical Background on Cutaneous Vaccination
Bruce G. Weniger, MD, MPH, Centers for Disease Control and Prevention
Intradermal Immunization: An Alternative Route for Vaccine Administration

Promising Methods for Cutaneous Delivery

- Electromagnetic energy
 - Light
 - Laser ablation
 - Electricity
 - Thermoporation
 - Induced current zaps holes in stratum corneum
 - Electroporation
 - Electric field promotes antigen uptake
 - Electro-osmosis
 - Solvent flows carry non-charged molecules
 - Iontophoresis
 - Field carries charged molecules
 - RF waves / heat
 - Sound energy
 - Ultrasound

- Laser Assisted Drug Delivery
 - Nonwood Abbey

- Gas-mediated kinetic deposition
 - Helium gas blows antigen carriers into skin
 - PowderMed (Pfizer subsidiary)
 - RNA/DNA-coated gold beads (Particle-Mediated Epidermal Delivery)
 - Antigens reformulated to suitable size and density (Epidermal Powder Immunization)
 - Microscission
 - “Sandblast” coated aluminum oxide microcrystals

- E-Trans®
- Alza
- ViaDerm™
- TransPharma Medical
- PassPort™ Patch
- Altea Therapeutics

Promising Methods for Cutaneous Delivery
Historical and Clinical Background on Cutaneous Vaccination

- Potential advantages; nomenclature
- Historical usage and methods
- Classical intradermal (ID) à la Mantoux
- Jet injectors, abandoned and resurrected
- New methods for ID vaccination
- Clinical aspects
- Research questions for ID delivery
- Promising methods for cutaneous delivery

Thank you

Disclaimers
- Commercial products and prototypes are named and illustrated for information only. No endorsement or recommendation by the CDC or DHHS are implied or should be inferred.
- The findings and conclusions in this presentation are those of the author. They do not necessarily represent the views of the Centers for Disease Control and Prevention, have not been formally disseminated by CDC, and should not be construed to represent any agency determination or policy.