Population Movements and Infectious Disease: Measles as a Case Study

Rebecca Freeman Grais
November 25, 2008
Outline

- Measles background
- Measles dynamics in wealthy countries
 - Determinants of dynamics
- Measles dynamics in poor countries
- Case Study
 - Niamey, Niger (city-level)
 - Niger (country level)
- Conclusions
Measles Overview

- A leading cause of vaccine-preventable death among children

- ~410,000 children < 5 yrs die globally

- Primary reason for deaths is the failure to deliver at least one dose of measles vaccine

- Case Fatality Ratio (CFR)
 - Developing countries: 1-5%
 - Refugee/Displaced settings and among malnourished children: may reach 10-30%
Complications of Measles

- Corneal Scarring causing blindness
- Encephalitis
- Pneumonia & diarrhea
Epidemic Dynamics

- Seasonal disease
- Multi-year epidemic cycle
- Infectious period begins before rash
- Directly transmitted
- Herd immunity requires 90 - 95% population immunity
- Disease confers lifelong immunity
Characteristics of Measles Vaccine

- Attenuated, live, injectable vaccine
- Antibodies appear 12-15 days after vaccination
- Vaccine Efficacy (1 dose)
 - 85% 9 mo
 - 95% 12-15 mo
 - 98% with 2 doses
- Vaccination within 72 hours of exposure may decrease severity of disease and transmission potential
- <1$ per child (direct and indirect)
Recent Global Evolution of Measles Control

- **1990s**: Urban campaigns targeting 9m-5y in Africa

- **2000**: UNICEF/WHO Measles Mortality Reduction and Regional Elimination Strategic Plan 2001-2005 (WHO/V&B/01.13)
 - Strengthen routine immunization
 - Second opportunity for measles immunization
 - Enhanced surveillance
 - Improved case management

- **2000**: Measles Initiative
 - Reduce measles deaths by 90% worldwide by 2010 (compared to 2000).
Measles Mortality Reduction

47 UNICEF / WHO Priority Countries 1999

94% of all measles deaths

No second opportunity (47)
Pockets of highly endemic measles

- Precarious political situation
- Insufficient vaccination coverage
- Limited access to care
- High birth-rates
- High population density
- Health Inequalities
Epidemic Dynamics

WHO guidelines (1999)

- Spread so fast it’s always too late to intervene
- Scarce resources best invested elsewhere
- Based on literature review and mathematical models of epidemics in non-African settings (mainly England and Wales)
Measles in England and Wales

- Strong epidemic oscillations
- Well described by SIR models
Determinants of measles dynamics in wealthy countries

- Seasonality
 - School terms
 - Christmas holidays

- Spatial spread of epidemics
 - Transportation within cities
 - Transportation between cities
Measles dynamics in high burden countries

<table>
<thead>
<tr>
<th>Place</th>
<th>Year</th>
<th>Length (months)</th>
<th>Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinshasa, DRC</td>
<td>2002</td>
<td>12+</td>
<td>17624</td>
</tr>
<tr>
<td>Kinshasa, DRC</td>
<td>2005</td>
<td>12+</td>
<td>40857</td>
</tr>
<tr>
<td>Niamey, Niger</td>
<td>2003</td>
<td>6</td>
<td>10880</td>
</tr>
<tr>
<td>Adamawa, Nigeria</td>
<td>2004</td>
<td>6</td>
<td>2505</td>
</tr>
<tr>
<td>Ndjamen, Chad</td>
<td>2005</td>
<td>6</td>
<td>8015</td>
</tr>
</tbody>
</table>
Economic Context

- Economy centers on:
 - subsistence crops
 - livestock
 - uranium deposits

- 2000: qualified for enhanced debt relief IMF-Highly Indebted Poor Countries (HIPC)

- 2005: 100% multilateral debt relief (IMF)

- Nearly 50% of the government's budget is derived from foreign donor resources
Health Context

- Health System (access to care)
 - 377 physicians
 - 21 midwives
 - 15 dentists
- Out of pocket expenditure: 89%
- Children with fever receiving antimalarials: 48%
- Vaccination coverage for 1 year olds (administrative estimates)
 - Measles 74%
 - DTP3 62%

WHO Country Health System Fact Sheet, 2006
Health Context, continued

- Life expectancy at birth (2005): 45 yrs
- Fertility rate (children per woman): 7
- U5 mortality 259/1000 live births
 - Neonatal causes 17%
 - HIV/AIDS 1%
 - Diarrheal diseases 20%
 - Measles 7%
 - Malaria 14%
 - Pneumonia 25%

WHO Country Health System Fact Sheet, 2006
Overview of methodology

- Epidemic dynamics at annual level
 - Grais RF et al. J R Soc. 2008 Jan 6;5(18)

- Epidemic dynamics at multi-annual level
 - Ferrari et al. Nature. 2008 Feb 7;451(7179)

- Epidemic dynamics at regional level
Reported Measles Cases, Niamey, Niger 1985-2003

Source: Ministry of Health, Niger
Reported measles cases in Niamey, Niger (2003-2004) (10880 cases)
Effective Reproductive Ratio, 2003-2004 measles epidemic, Niamey, Niger

Source: Grais et al, TRSTMH, 2007
Critical Community Size

- Population size necessary for persistence
- Strong seasonality in Niamey results in higher CCS

Seasonal Dynamics

Regional dynamics: rainfall

Epidemic dynamic drivers in High Burden Settings

- **Seasonality**
 - Rainfall
 - Contact patterns
 - Virus viability
 - Population Migration
 - Harvest related seasonality
 - Birth rate
 - Access
Public Health Implications

- Strong seasonality of transmission in Niamey leads to different dynamics than predictions based on industrialized countries in the northern hemisphere.
- Dangers of extrapolating dynamics for these without a detailed understanding of local situations.
- Understanding of population dynamics (seasonal migration, climate) essential for control.
Acknowledgements

- Ministries of Health, Niger, Nigeria, Chad, DRC
- MSF-F and MSF-B in field and Paris
- WHO
- Survey teams
- Study participants
- Center for Infectious Disease Dynamics
- CERMES
- EPIET