Flavivirus Vaccines
Japanese Encephalitis and Dengue

14th Advanced Vaccinology Course
Veyrier du Lac, France
May 16, 2012

Harold S. Margolis, MD
Dengue Branch
Centers for Disease Control and Prevention
San Juan, Puerto Rico
hsm1@cdc.gov
The Presentation

- Comparisons
- Japanese Encephalitis Vaccine
 - The need - disease burden and distribution
 - WHO and GAVI perspectives
 - Status of vaccines
- Dengue Vaccines
 - The need – burden and lack of primary prevention tools
 - Dengue -
 - Vaccines – constructs and candidates
 - Lead-candidate vaccine trial
Flaviviruses

- Tick-borne encephalitis virus
 - West Nile Virus
 - Murray Valley Encephalitis Virus
 - Japanese Encephalitis Virus
 - St. Louis Encephalitis Virus

- DENV 1
- DENV 2
- DENV 3
- DENV 4

Yellow Fever Virus
Japanese Encephalitis and Dengue Life-cycles

Japanese Encephalitis

- Virus in lymph nodes, other organs, blood
- Vertical Transmission
- Vertical Transmission
- Mosquito infects susceptible person
- Mosquito infects susceptible person
- Mosquito acquires virus during feeding, virus replicates in mosquito
- Mosquito acquires virus during feeding, virus replicates in mosquito
- Reintroductions of infected mosquitoes or vertebrates
- Viral Amplification

Dengue

- Mosquito infects humans – virus in lymph nodes, other organs, blood
- Mosquito acquires virus during feeding, virus replicates in mosquito
- Mosquito acquires virus during feeding, virus replicates in mosquito
- Mosquito acquires virus during feeding, virus replicates in mosquito
- Mosquito acquires virus during feeding, virus replicates in mosquito

Source: Yu, T.F., 1994
JE and Dengue Vaccine Status

<table>
<thead>
<tr>
<th>JE Vaccine</th>
<th>Dengue Vaccine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple licensed products</td>
<td>No licensed product</td>
</tr>
<tr>
<td>New / replacement vaccines</td>
<td>Multiple vaccines in trials</td>
</tr>
<tr>
<td>Strong pipeline</td>
<td>Strong pipeline</td>
</tr>
<tr>
<td>Inactivated, live attenuated, chimeric attenuated</td>
<td>Chimeric attenuated, inactivated, subunit</td>
</tr>
<tr>
<td>Indications: pediatric and adult</td>
<td>Indications(?): pediatric and adult</td>
</tr>
<tr>
<td>Need better data</td>
<td>Need data - vaccine performance</td>
</tr>
<tr>
<td>Need better diagnostics</td>
<td>Need better diagnostics</td>
</tr>
<tr>
<td>Need to increase usage</td>
<td></td>
</tr>
</tbody>
</table>
Japanese Encephalitis Vaccines
Japanese Encephalitis Surveillance

Source: J. Hombach, WHO-IVR
Japanese Encephalitis Disease Burden

3 billion people living in at-risk areas

50,000 cases reported annually

~30% of cases with neurologic deficits

10 - 15,000 deaths / yr (estimated)
The WHO Perspective

- Need for increased JE awareness and for vaccination in areas where a public health problem

- Most effective immunization strategy
 - one time campaign in target population, as defined by epidemiological data, followed by inclusion into routine immunization programme.

- SAGE supported JE immunization and recognized JE vaccine to be underutilized

Sources Weekly Epidemiological Record, 25 August 2006
SAGE 2008
The GAVI Perspective

- Prioritized JE vaccine (2008)
- Included JE in pledging conference (2011)
- Work Group has identified issues and options to guide countries to prepare applications for support
- Reviewed technical elements for applications e.g., disease burden data, target population, implementation strategy, vaccine status, critical gaps
- 2011 – decided to open funding window once WHO prequalified vaccine is available
Status of JE Vaccination Programs

Endemic Countries

<table>
<thead>
<tr>
<th>Comprehensive*</th>
<th>Expanding</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>India</td>
<td>Bhutan</td>
</tr>
<tr>
<td>Japan</td>
<td>Malaysia</td>
<td>Brunei</td>
</tr>
<tr>
<td>South Korea</td>
<td>Cambodia</td>
<td>Indonesia</td>
</tr>
<tr>
<td>Taiwan</td>
<td>North Korea</td>
<td>Myanmar</td>
</tr>
<tr>
<td>Thailand</td>
<td>Bangladesh</td>
<td>Philippines</td>
</tr>
<tr>
<td>Vietnam</td>
<td>Laos (pilot)</td>
<td>Timor Leste</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nepal (initiating)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- No surveillance for JE

Used in EPI or annual campaigns on a national or broad regional basis
<table>
<thead>
<tr>
<th>Type</th>
<th>Strain</th>
<th>Producer</th>
<th>Status / WHO Prequalification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inactivated mouse-brain (JE - VAX)</td>
<td>Nakayama Beijing</td>
<td>No longer produced</td>
<td>No new production WHO = no</td>
</tr>
<tr>
<td>Inactivated Vero cell (IXIARO)</td>
<td>SA 14-14-2</td>
<td>Intercell /Novartis Biological E</td>
<td>Licensed - US, Canada, EU (travellers); endemic area trials underway; India license WHO ?</td>
</tr>
<tr>
<td>Inactivated Vero cell</td>
<td>Beijing 1</td>
<td>Biken Kaketsuken</td>
<td>In development Japan use only</td>
</tr>
<tr>
<td>Attenuated chimera, Vero cell (IMOJEV)</td>
<td>SA14-14-2 / YF chimera</td>
<td>sanofi pasteur</td>
<td>Approved – Thailand, Australia, India</td>
</tr>
<tr>
<td>Attenuated PHK based</td>
<td>SA14-14-2</td>
<td>Chengdu Institute of Biological Products</td>
<td>Individual country registrations ? WHO 2013</td>
</tr>
</tbody>
</table>
Current JE Vaccines

<table>
<thead>
<tr>
<th>Type</th>
<th>Doses</th>
<th>Booster Doses</th>
<th>Ages</th>
<th>Initial Efficacy studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inactivated Vero cell (IXIARO)</td>
<td>2 (0, 28 days)</td>
<td>After 1-2 yrs, studies ongoing</td>
<td>≥17 yrs Peds under study</td>
<td>Immunogenicity (non-inferiority)</td>
</tr>
<tr>
<td>Attenuated chimera, Vero cell (IMOJEV)</td>
<td>1</td>
<td>None studies ongoing</td>
<td>≥12 months</td>
<td>Immunogenicity (non-inferiority)</td>
</tr>
<tr>
<td>Attenuated PHK based</td>
<td>1</td>
<td>After 1 yr, studies ongoing</td>
<td>≥ 9 months</td>
<td>Case-control Immunogenicity (non-inferiority)</td>
</tr>
</tbody>
</table>
Summary

- Routine childhood JE immunization with available vaccines is effective in high incidence areas.
- Expanding efforts to provide JE immunization in high risk areas.
- JE vaccines appear to have good safety profiles.
- Need to improve JEV diagnostics to obtain better disease burden estimates, improve surveillance and determine vaccine effectiveness.
Dengue
A Vaccinology Perspective
Dengue Virus Infection – Natural History

Infection Incidence
~ 5% / year

Asymptomatic
75%

Symptomatic
25%

Dengue Fever
98-99%

Severe Dengue
DHF/DSS
1-5%

Survive

Risk factors:
– Viral titer
2° Infection

Death
0.1 - 5%

• A major cause of febrile illness in endemic areas

Adapted from Vaccine 2004; 22: 1275-1280
Clinical Course of Dengue

Mosquito bite
- Range: 3 to 14 d; usually 4 to 7 days

Incubation
- Range: 2 to 7 days; usually 3 to 5 days

Viremia

Febrile Phase
- Muscle, joint, and/or bone pain, headache, eye pain, rash
- Range: 2 to 7 days; usually 3 to 5 days

Critical Phase
- 1 to 3 days; usually <48 hrs

Convalescent Phase
- Usually 3 to 5 days

Day of Illness
-2 0 2 4 6 8 10 12
Dengue – Diagnostic Events

Acute (febrile) Phase

Viremia

PCR (DENV RNA)

NS1 antigen detection (immunoassay)

IgM anti-DENV

0 1 2 3 4 5 6 7 8 9 10
Incubation Period

Days Post Onset of Fever

0 1 2 3 4 5 6 7 8 9 10
30 60 90

Days Post Onset of Fever
Why a Dengue Vaccine?

- Large burden - disease and economic
- Need for effective primary prevention tool
 - Present = vector control, does not work
- Would complement secondary prevention
 - Medical care has significantly reduced dengue mortality
Dengue Burden

Estimated burden of dengue, by continent, 2010

<table>
<thead>
<tr>
<th>Continent</th>
<th>Dengue (Millions (credible interval))</th>
<th>Inapparent infections (Millions (credible interval))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa</td>
<td>15.7 (10.5-22.5)</td>
<td>48.4 (39.3-65.2)</td>
</tr>
<tr>
<td>Asia</td>
<td>66.8 (47.0-94.4)</td>
<td>204.4 (151.8-273.0)</td>
</tr>
<tr>
<td>Americas</td>
<td>13.3 (9.5-18.5)</td>
<td>40.5 (30.5-53.3)</td>
</tr>
<tr>
<td>Oceana</td>
<td>0.18 (0.11-0.28)</td>
<td>0.55 (0.35-0.82)</td>
</tr>
<tr>
<td>Global</td>
<td>96 (67.1-135.6)</td>
<td>293.9 (217.0-392.3)</td>
</tr>
</tbody>
</table>

Bhatt, S et al Nature 2013; 496: 504-507
Dengue Vaccines
Post-Infection Antibodies Protect Natural History Studies

- **Homotypic Antibodies**
 - Protect against homologous DENV disease / infection
 - (Sabin 1952; Halstead 1974)
 - Cohorts followed over multiple years

- **Heterotypic Antibodies**
 - Cross protection against disease ~ 6 months (Sabin, 1952)
 - Cross protection against infection may last longer
Problems with Antibodies
Antibody Dependent Enhancement of Infection (ADE)

- Enhanced infection in presence of heterotypic (non-neutralizing) antibodies
 - *In vitro* observations
 - Chimpanzee studies with passively transferred antibodies
 - AG129 interferon deficient mouse model

- Severe dengue (DHF) – epidemiologic observations
 - DHF among infants with 1st DENV infection (passively acquired maternal antibody)
 - Increased risk for DHF with 2\textdegree infections
Types of Dengue Vaccine Candidates

- **Present Generation** (commercial development)
 - Cell culture adapted, live attenuated viruses
 - Infectious clones
 - chimeric viruses
 - attenuation by site directed mutagenesis
 - Recombinant subunits of DENV envelope proteins
 - Inactivated dengue viruses

- **Next Generation** (in development)
 - Viral vectored subunits
 - VLPs
 - Peptide chimeras
 - DNA
Dengue Vaccine Candidates, Tetravalent (Commercial)

<table>
<thead>
<tr>
<th>Producer</th>
<th>Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sanofi Pasteur</td>
<td>Live attenuated chimeric vaccine</td>
</tr>
<tr>
<td></td>
<td>17D yellow fever virus non-structural genes + respective DENV 1,2,3 or 4</td>
</tr>
<tr>
<td></td>
<td>envelope genes</td>
</tr>
<tr>
<td>GSK (WRAIR)</td>
<td>Switching from cell culture derived live attenuated vaccine to cell culture</td>
</tr>
<tr>
<td></td>
<td>derived inactivated vaccine</td>
</tr>
<tr>
<td>Takeda (InViragen, CDC)</td>
<td>Live attenuated chimeric vaccine</td>
</tr>
<tr>
<td></td>
<td>Attenuated DENV-2 + chimeras of DENV-2 non-structural genes + DENV 1,3, or 4</td>
</tr>
<tr>
<td></td>
<td>envelope genes</td>
</tr>
<tr>
<td>Butantan (NIAID)</td>
<td>Engineered mutations in 3’ NTR and non-structural genes of DENV-1, 2, 4 & DENV-4/DEN-3 chimera</td>
</tr>
<tr>
<td>Merck (Hawaii Biotech)</td>
<td>Subunits of DENV 1,2,3,4 envelope protein expressed in Drosophila S2 cell lines + alum adjuvant</td>
</tr>
</tbody>
</table>
Status of Dengue Vaccines (tetravalent)

<table>
<thead>
<tr>
<th>Producer / Developer</th>
<th>Process Development</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sanofi Pasteur</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(YF-DENV chimeras)</td>
<td></td>
<td>2009 - 12</td>
</tr>
<tr>
<td>GSK</td>
<td></td>
<td>2013</td>
</tr>
<tr>
<td>(inactivated)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIAID</td>
<td></td>
<td>2013</td>
</tr>
<tr>
<td>(DENV chimeras + engineered mutations)</td>
<td></td>
<td>2011</td>
</tr>
<tr>
<td>InViragen</td>
<td></td>
<td>2012</td>
</tr>
<tr>
<td>(attenuated DENV chimera)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Merck</td>
<td></td>
<td>2012</td>
</tr>
<tr>
<td>(recombinant subunit)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **NIAID**: Phase I, Phase II, Phase IIB-III
- **Sanofi Pasteur**: Phase II
- **GSK**: Phase I
- **InViragen**: Phase I
- **Merck**: Phase I
Chimeric Flavivirus Vaccine Technology

Yellow fever 17D or Dengue genome cloned as cDNA

5' C prM E Nonstructural genes 3'

Exchange coat protein genes of dengue 1,2,3,4 (wild-type)

prM E

prM E

5' C prM E Non-structural genes 3'

Chimeric cDNA -> transcribe to RNA

5' C prM E Non-structural genes 3'

Transfect mRNA

Grow virus in cell culture

Envelope = heterologous virus

RNA replicative ‘engine’ = YF 17D or DENV
The Ideal Product Profile

- **Formulation:** Tetravalent protection (DENV 1-4)
- **Administration:** Delivery over 4 – 6 months and during established immunization visits
- **Storage:** off the cold chain
- **Immunogenicity:** high with ≤ 3 doses
- **Protection:** > 85% against dengue (dengue fever) ± dengue virus (DENV) infection
- **Long-term protection:** w/o booster doses
Dengue Vaccine Evaluation
Lack of Good Animal Models
Dengue

- Macaque models – short incubation period, infection only, no disease, does not readily predict immunogenicity in humans
- AG 129 interferon deficient mouse model – short incubation period, infection, disease (DHF)
- Human clinical trials required to determine performance of dengue vaccine candidates
Dengue Epidemiology
A Challenge to Vaccine Evaluation

- Disease presentation – acute febrile illness
- Incidence: high endemic + cyclical epidemics
- Highly seasonal
- Several circulating virus types (serotypes)
- Peak age of incidence varies by region
- Severe dengue, potential adverse event, is natural progression of disease

Dengue Vaccine Efficacy Trial Sites

- **Need for large population base** because of focal nature of dengue

- **Febrile illness surveillance** to identify DF cases and determine:
 - Age-specific disease incidence
 - Determine variation in incidence over several seasons (~3 yrs)

- **Molecular and immuno-diagnostic testing** for dengue (DF) = febrile illness ≥2 days + DENV viremia detected by PCR or NS1 antigen

First Dengue Vaccine Efficacy Trial (Phase IIB)
Prospective study of cohort for acute febrile illnesses

- 3,013 children ages 3-13 with annual replacement with children 4-5 years of age

- Active surveillance for absences / febrile episodes in schools and home visits during vacations

- Fever = 37.5°C oral irrespective of duration

- Hospital clinic evaluation + blood draw + follow-up blood draw

- Diagnostic testing = DENV by PCR, IgM anti-DENV

From Sabchareon, A et al. PLoS NTD 2012; 6: e1732
Dengue in Ratchaburi, Thailand 2006 - 2009

- Cohort dropout rate ~4% (2008 = 14% due to enrollment in CYD 23 vaccine trial)
- 3.39 absences / child, 0.53 febrile episodes
- Dengue clinic visit - day post fever onset = 53% day 1-2, 30% day 3-4, 14% day 5-6
- Hospitalizations: 18%, 10%, 8%, 8%, respective yrs

From Sabchareon, A et al. PLoS NTD 2012; 6: e1732
Dengue Cases by Month, Ratchaburi, 2006 - 2009

Adapted from Sabchareon, A et al. PLoS NTD 2012; 6: e1732
Dengue Virus Serotypes, Ratchaburi 2006 - 2009

All years (%): DENV-1 (43); DENV-2 (29); DENV-3 (20); DENV-4 (8)

Adapted from Sabchareon, A et al. PLoS NTD 2012; 6: e1732
Disease Severity, Ratchaburi, Thailand 2006 - 2009

- Used 1997 WHO Case Definitions

<table>
<thead>
<tr>
<th>Severity</th>
<th>Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undifferentiated Fever (UF)</td>
<td>210</td>
<td>53.3</td>
</tr>
<tr>
<td>Dengue Fever (DF)</td>
<td>142</td>
<td>36.0</td>
</tr>
<tr>
<td>Dengue Hemorrhagic Fever (DHF)</td>
<td>42</td>
<td>10.7</td>
</tr>
<tr>
<td>Total</td>
<td>394</td>
<td>100</td>
</tr>
</tbody>
</table>

- Hospitalization: UF= 15%; DF = 84%; DHF = 100%
- 86.3% = 2° infections, no association with severity
- No association of DENV serotype and severity

From Sabchareon, A et al. PLoS NTD 2012; 6: e1732
Dengue Vaccine Efficacy Trial (CYD 23) Ratchaburi, Thailand, 2009 - 2012

- Blinded, placebo-controlled, 2:1 individual randomization (Phase IIB)
- Vaccines
 - Dengue - tetravalent, live attenuated 17D YF- DENV chimera
 - Placebo – vaccine diluent (initially rabies vaccine)
- Sample size: 4002 children ages 4-11 years
- End-point: dengue fever (acute febrile illness + DENV viremia by PCR or NS1)
- Follow-up: 13 months after 3rd vaccine dose

Adapted from Sabchareon, A et al. Lancet 2012; 380:1559-1567
CYD23 Vaccine Trial, Ratchaburi, Thailand

The Participants

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Vaccine (n=2669)</th>
<th>Placebo (n=1333)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Age</td>
<td>8.18 yrs</td>
<td>8.23 yrs</td>
</tr>
<tr>
<td>Male</td>
<td>1187</td>
<td>48</td>
</tr>
</tbody>
</table>

From the Immunogenicity Subset (n=300)

<table>
<thead>
<tr>
<th></th>
<th>Vaccine</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-DENV (≥1 serotype)</td>
<td>138</td>
<td>68</td>
</tr>
<tr>
<td>Anti-JEV</td>
<td>157</td>
<td>77</td>
</tr>
</tbody>
</table>

Adapted from Sabchareon, A et al. Lancet 2012; 380:1559-1567
Safety Results - CYD 23 Trial

<table>
<thead>
<tr>
<th>Adverse Event</th>
<th>Dengue Vaccine</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Analysis set</td>
<td>2666</td>
<td></td>
</tr>
<tr>
<td>SAE – any (anytime)</td>
<td>315</td>
<td>11.8</td>
</tr>
<tr>
<td>SAE - vaccine related</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Analysis set</td>
<td>697</td>
<td></td>
</tr>
<tr>
<td>AE - 30 minutes of injection</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AE injection site (solicited within 7 days)</td>
<td>426</td>
<td>62</td>
</tr>
<tr>
<td>AE systemic (solicited within 14 days)</td>
<td>538</td>
<td>78</td>
</tr>
<tr>
<td>Discontinued study</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Clinical Outcomes of Dengue

- No differences between vaccine and placebo groups in clinical features or severity of dengue
 - Duration of clinical syndrome, fever or hospitalization
 - Bleeding, plasma leakage, thrombocytopenia, shock (n=0), organ impairment (n=1)
Serotype Specific and Overall Efficacy CYD 23 Trial

<table>
<thead>
<tr>
<th>Per protocol</th>
<th>Dengue Vaccine</th>
<th>Control</th>
<th>Efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Person Years Risk</td>
<td>Cases</td>
<td>Person Years Risk</td>
</tr>
<tr>
<td>Total</td>
<td>2522</td>
<td>45</td>
<td>1251</td>
</tr>
<tr>
<td>DENV 1</td>
<td>2436</td>
<td>9</td>
<td>1251</td>
</tr>
<tr>
<td>DENV 2</td>
<td>2510</td>
<td>31</td>
<td>1250</td>
</tr>
<tr>
<td>DENV 3</td>
<td>2541</td>
<td>1</td>
<td>1263</td>
</tr>
<tr>
<td>DENV 4</td>
<td>2542</td>
<td>0</td>
<td>1265</td>
</tr>
</tbody>
</table>

Immune Response in Trial Participants

CYD 23 Trial

<table>
<thead>
<tr>
<th>Per protocol</th>
<th>Dengue Vaccine</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Seropositive PRNT<sub>50</sub> >10 (%)</td>
</tr>
<tr>
<td>28 days post last dose</td>
<td>N=95</td>
<td></td>
</tr>
<tr>
<td>DENV 1</td>
<td>90</td>
<td>95</td>
</tr>
<tr>
<td>DENV 2</td>
<td>94</td>
<td>99</td>
</tr>
<tr>
<td>DENV 3</td>
<td>95</td>
<td>100</td>
</tr>
<tr>
<td>DENV 4</td>
<td>93</td>
<td>98</td>
</tr>
<tr>
<td>1 year post last dose</td>
<td>N=95</td>
<td></td>
</tr>
<tr>
<td>DENV 1</td>
<td>73</td>
<td>77</td>
</tr>
<tr>
<td>DENV 2</td>
<td>81</td>
<td>85</td>
</tr>
<tr>
<td>DENV 3</td>
<td>85</td>
<td>89</td>
</tr>
<tr>
<td>DENV 4</td>
<td>89</td>
<td>94</td>
</tr>
</tbody>
</table>

Conclusions

- Tetravalent, DENV – YF chimeric vaccine (CYD23) shown to be safe when administered to children living in dengue endemic area and high background of previous DENV infection.

- However, vaccine showed only partial (low) protection against dengue due to almost no protection against DENV – 2 infection.
Possible Explanations

- Statistical outliers - study not designed to look at serotype-specific results but
- Interference in immune response due to administration of multiple live vaccine viruses
- WT virus (DENV), vaccine virus mismatch
- Lack of stimulation of T-cells since DENV non-structural proteins NOT in vaccine (YF - backbone)
- Present way to measure IgG anti-DENV. PRNT_{50} is not measuring the right (protective) antibody
Dengue Virus