Challenges and prospects for new tuberculosis vaccines

David JM Lewis MD

Imperial College Healthcare NHS Trust
Learning Objectives

• Epidemiology
 • Burden, trends

• Pathogen
 • Physical composition, “life cycle”, antigens

• Host-Pathogen interaction
 • Nature of infection<→>disease, immunopathology<→>protection

• Pre-clinical models and Predictive Markers
 • Which one? Do they mean anything?
 • Surrogate markers: infection – disease – immunity – protection

• Vaccine design & development
 • What is “BCG”? Does it work? Is it safe? Can/will it be replaced?
 • Choice of antigen(s) / delivery system
 • Multiplicity of approaches, down-selection <→> competition
Epidemiology
TB Epidemiology – in 2014

- 9.6 million people developed TB
 - African Region 28%, India 23%, China 10%, Indonesia 10%
 - 56% male adults, 34% adult women, 10% children
 - 12% HIV infected (3/4 are in in African Region)
 - 1.5 million died – 73% HIV-negative

- TB incidence declining
 - ↓ 1.5% each year since 2000
 - TB mortality ↓ 47% since 1990

- Multi-Drug Resistant TB (MDRTB)
 - Worldwide: 3.3% new cases 20% of relapses
 - ~10% of MDRTB is XDRTB or untreatable
 - MDRTB is a driver for vaccine development
Pathogen
M. *tb*: structure & function

- Complex antigens
 - Proteins
 - In cell wall, and internal
 - Many are secreted at different stages of infection
 - Mycolipids, lipids, sugars, glycoproteins
 - Non-classical antigen presentation of lipids
 - No lipid vaccines to guide us – Koch removed lipids from “PPD”

- Complex “life cycle”
 - Logarithmic growth
 - Multiple secreted antigens \rightarrow immunodominant
 - Ability to become latent / dormant *in vivo*
 - Latency genes, Latency antigens
 - Immunosilent, antibiotic resistant, may relapse to active disease
Host–Pathogen Interactions
M. *tb* and *Homo sapiens*: 73,000 years of co-evolution

Geographical distribution of current “lineages” of *M. tb*, time since divergence (10k years), mapped onto hypothesized human migration from African origin.

Published online 1 September 2013; doi:10.1038/ng.2744
“Classical” story of TB immunity: granulomas

Innate Immunity
- Phagocytes
 - Ingest & kill mycobacteria

CMI Cell Mediated Immunity
- CD4+ T cells
 - Secrete Cytokines
 - Activate phagocytes
 - Phagocytes kill bacilli

DTH Delayed Type Hypersensitivity
- CD8+ T cells
 - “Last defence” - failing phagocytes
 - T cells kill phagocytes
 - Necrosis - tissue destruction
 - Highly infectious

Infection

- Macrophage infection
- Fused infected macrophages
- Granulomas - high bacterial load
- Granulomas - low bacterial load
- Necrotic granulomas - very high bacterial load

Spread

LEGEND
- CD4+ T Cell
- CD8+ T Cell
- NK T Cell
- γδ T Cell
- Macrophage
- Langhans Giant Cell
- Fibroblast
- Tubercle Bacilli

Log (MtB load)

Time (weeks)

3

6

9
Primary Disease: non-immune people

- Bacilli inhaled
- Infect lung via airways

M. *tb* immunity (CMI & DTH) is now present in lung tissues

Meningitis Miliary TB

Innate & CMI overwhelmed DTH ineffective

- Bacilli inhaled
- Infect lung via airways

95% Recovery

M. *tb* Escapes

Blood

No M. *tb* immunity in lung tissue

Innate-CMI in balance DTH low

Innate-CMI in balance DTH low
Post Primary Disease: “immune” people

- Inhalation of a new infection
- Reactivation of latent infection

M. tb CMI & DTH is already present in tissues

Innate & CMI – exhausted
DTH – harmful
- necrosis & fibrosis
- cavities, bacteria, infectious!

Transport of bacilli in blood

Infectious lung disease

Necrotic destructive disease – cavities with multiple bacilli
Multiple TB vaccines?

- Inhale *M. tb.*
 - Immediate Killing (90%)
 - Primary Infection (10%)
 - Localised Disease
 - Recovery DTH+
 - Latency
 - Re-infection
 - Latency Antigens
 - Re-activation

- Disseminated Disease
- Post Primary Disease

Types of vaccines:
- Prophylactic
- Therapeutic
- Booster
TB : 4 *different* vaccines needed?

- **Primary disease (non-immune)**
 - Enhanced innate immunity? Avoid DTH?
 - Prevent extra-pulmonary spread (meningitis..) – replace BCG?
 - Neonatal use (maturity of immune system, EPI vaccines, effect of HIV...)

- **Post-primary disease (immune – hypersensitive)**
 - Prevent pulmonary (infectious) disease: block transmission
 - Work in the context of DTH / pre-immunity / Boost BCG+?
 - Must reach teenagers & Adults. Effect of established HIV... ?

- **Latent disease**
 - What is “latent TB” – how do we detect infection and not just immunity?
 - Different “latency” antigens ? What immunity – prophylactic or therapeutic?

- **Therapeutic / adjuvant therapy**
 - MDRTB – increasing need? Reduce infectivity quicker?
 - Which antigens?
 - Exacerbate disease (Koch phenomenon, HIV immune reconstitution)?
The Challenge Of An Existing Vaccine

Baccille Calmette–Guérin: BCG
What is Bacille Calmette Guérin: BCG?
The first (and only) TB vaccine – 1930s

BCG is not *A* vaccine but a *family* of vaccines!

RD1 is a key deletion to attenuate BCG from virulent *M. bovis*

ESAT antigens, CFP10 antigen deleted
Ag85 cell wall antigen retained

Adapted from Vaccine 28 (2010) 2259–2270 and doi:10.1038/nrmicro1472
BCG controversies: does it work?

- **BCG prevents primary disease**
 - UK trial **80% effective**: miliary and TB meningitis in children
 - US First Nation: 50%+ protection (pulmonary) lasting >50 years

- **Geographical / genetics effect on efficacy**
 - Madras / Chennai trial in India – **0% effective** against any disease
 - Environmental mycobacteria – skewed immunity? Inhibit BCG?

- **BCG Sub-Strain differences?**
 - Phenotype, immunology, **reactogenicity**, but not **efficacy**?

- **19th Century manufacturing techniques – not cGMP**
 - Different immunity seen after slow and fast growth
 - Moving a factory 200 miles – no growth, ineffective, withdrawn
 - Frequent shortages when manufacturing fails (cancer therapy)

- **Does BCG prime correctly?**
 - M. tb antigens missing. “Chronic” infection – immune response? Skew?
 Interfere with vaccines?
 - **But The Whole World Is BCG primed … !**
BCG controversies: is it safe?

• Most number of doses of any vaccine delivered
 • Local lymphadenitis <1 in 100, resolves
 • Suppurating lymphadenitis, bone, disseminated disease < 1:1000 (immunodeficient)
 • Marked sub-strain differences in reactogenicity

• Increased disseminated disease in HIV+ neonates
 • WHO guidelines against use in known HIV+
 • But high HIV+ is where TB prevalence high too …

• Can it be used to prime infants?
BCG?

BCG ✗ (even where it works)

BCG ❌ (even where it works)

BCG

- Infants
 - Meningitis
 - Miliary TB

- Adults, Adolescents
 - Pulmonary spreaders
 - Extra pulmonary
 - HIV related

"I suppose I’ll be the one to mention the elephant in the room."
Models of Infection & Protection

http://stm.sciencemag.org/content/6/265/265ra167.abstract
Animal models – predictive or misleading?

- **Mouse**
 - Do not form **granuloma**
 - Primary TB only
 - Mouse strain differences
 - **Reductions** in bacterial load
- **Guinea Pig**
 - Mimic human lung disease.
 - Limited reagents
 - **Mortality** measure only
 - Very hard to **improve** on BCG
- **Non-Human Primates**
 - Mimic **human disease**
 - Acute Phase Proteins, pathology ⋯
 - Costs, availability, NHP issues ⋯
Human Challenge Models?

- Inject BCG into skin, do biopsy
 - Measure bacterial load: culture / PCR
 - BCG loads in BCG+ < BCG −
 - Inverse correlation immunity and PCR after MVA85A
 - BCG − not *M. tb* − predictive of ⋯?

- Blood functional assays
 - Mix whole blood / separated blood cells with BCG or *M. tb* & measure bacterial killing
 - Humans can be studied, cytokines, field use
 - Blood is not the tissue that fights TB

- Aerosol challenge with attenuated TB, BCG
 - Human models? May better predict TB?
 - Still not *M. tb* − with all virulence genes & antigens

http://dx.doi.org/10.1080/21645515.2015.1134407
Predictive Markers of Protection
Making better vaccines than BCG
Surrogate markers: “immunity” ≠ “efficacy”

- Most “traditional” vaccines have antibody titre as surrogate - easy to standardise

- Classical evaluation of CD4 T cell-based TB vaccines:
 - Interferon gamma secretion (PBMCs) in response to ex vivo antigen stimulation

- Problem: increasing evidence that in humans IFNg responses do not correlate with protection
Measuring *Effector* T cells: polyfunctionality – better at predicting effectiveness?

Challenge:
- Use complex datasets in a *quantitative* way?
- How to *standardise* labs / developers?
- Will they *correlate* with protection in humans – still T cell readouts…?

Combinations of cytokines measured on the same cell at the same time by multi-colour flow cytometry.
BIOMARKERS: what can predict protection and disease in humans?
The Challenge Of Too Many Vaccine Candidates
<table>
<thead>
<tr>
<th>Discovery</th>
<th>Preclinical</th>
<th>Phase I</th>
<th>Phase Ila</th>
<th>Phase IIb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approximately 20 novel TB vaccine</td>
<td>Combination vaccines prime-</td>
<td>MVA85A (ID, Aerosol) University of Oxford,</td>
<td>VPM1002 VPM, SII, TBVI</td>
<td>M72 + AS01E GSK, Aeras</td>
</tr>
<tr>
<td>strategies in development, several</td>
<td>boost</td>
<td>TBVI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R&D partners, TBVI</td>
<td>GSK, TBVI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Native and RHBHA</td>
<td>H64 + CAF01 SSI, TBVI</td>
<td>MTBVAC University of Zaragoza, TBVI</td>
<td>H1/H56 : IC31® SSI, Valneva,</td>
<td></td>
</tr>
<tr>
<td>LCMV based candidates</td>
<td></td>
<td></td>
<td>Aeras</td>
<td></td>
</tr>
<tr>
<td>ChAV based candidates</td>
<td>rBCGΔais1/zmp1</td>
<td>ChAdOx1.85A MVA85A University of Oxford,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rBCG::Hly::NuoG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Att. Mtb Rv1503c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Att. Mtb SigE::Fad26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inactivated MTBVAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. tuberculosisΔESX5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTBVAC second generation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. microti vaccine MP Praha (ΔΔ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latency, in vivo expressed and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latency antigens</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resuscitation and subdominant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peptidome antigens</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glycolipid antigens</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Therapeutic vaccine - MVA platform</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transgene SA, TBVI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjuvanted / Subunit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viral vectored antigens</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>recombinant BCG or M. tb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>other mycobacterial species</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pipeline - March 2016
www.tbvi.eu
www.aeras.org
ESATs: latency antigens

- ESATs play role in *M. tb* modulation of host immunity
 - Deleted from BCG (RD1)
 - Included in vaccines (& diagnostic tests)

- Relevant in reactivation of latent infection
 - *M. tb*. encounters a distinct immunological milieu in latently infected persons
 - Environmental ‘trigger’ changes *M. tb*. gene expression
 - **H56 subunit** & IC31 / CAF01 adjuvants
 - fusion-protein: Ag85B, ESAT-6 and **Rv2660c** (latency)
 - H56 vaccine effective in Cornell model of mycobacterial persistence after anti-TB drug treatment

http://doi:10.1038/nm.2285
http://dx.doi.org/10.1016/j.vaccine.2012.05.035
MVA–Ag85A

- **S Africa Phase 2b trial**
 - Replicating vector \rightarrow CMI
 - Ag85A (BCG & *M. tb*) \rightarrow boost BCG at birth
 - 1 dose – 4–6 month infants
 - TB infection endpoint

- **Safe, No protection**
 - No correlate of immunity
 - Did BCG fail to prime?
 - Infants unable to respond?
 - Wrong TB disease type?

- **2b HIV+ adults: no efficacy**
AERAS402

• Replication-deficient human adenovirus 35
 • TB antigens Ag85A, Ag85B and TB10.4 (ESAT family)
 • Safe, immunogenic in Ph 1
 • Reduced *M. tb* in mice

• Dose-finding, multicentre Phase 2 trial
 • Healthy, HIV-uninfected infants
 • BCG-vaccinated → “BCG+” strategy
 • 3 IM doses on days 0 and 28, 6m
 • Response << BCG vaccinated adults
 • T cells not increased by a third dose

dx.doi.org/10.1016/j.vaccine.2015.03.070
MTBVACC doi: 10.1016/S2213-2600(15)00435-X

• Live, recombinant M. tuberculosis
 • Attenuated by two gene deletions:
 • phoP: transcription factor, virulence
 • fadD26, synthesis of lipid virulence factors
 • Superior protection in animal studies
 • Safe and immunogenic in Phase I trial
 • Phase Ib testing South African field site
• Is it safe to give live rM. Tuberculosis?
 • HIV infected / mothers / infants of HIV+?
• Will injected live attenuated M. tb
 • Give better type of immunity than BCG?
 • Longer duration (adults)?
 • Be boostable?
• **Subunit latency vaccines**
 * fusion protein of
 * Ag85B – BCG & TB
 * ESAT-6 – TB secreted (deleted BCG)
 * Rv2660c – TB latency
 * Adjuvant IC31®
 * Repeating oligonucleotides I–C – CMI

• **South African Tuberculosis Vaccine Initiative**
 * Phase 1/ 1a
 * HIV-negative adults
 * BCG primed in infancy
 * With and without latent TB infection
 * Phase 1
 * Adults recently treated for pulmonary TB

doi:10.1016/j.vaccine.2013.07.05
Challenge for trials: down-selection, commercial competition & funding

• Geographic diversity in risk of TB infection and disease
• Clinical endpoints?
 • Disease? Infection? Latency? Cure?
• What level of efficacy will be acceptable?
• Duration of trials
 • decades to detect post-primary disease?
• Trial sites
 • overload, is the population globally representative?
• How to integrate with BCG or replace BCG
 • BCG at birth will skew immunity? Huge BCG+ birth cohort already.
• Impact of HIV in endemic areas / co-epidemiology.
• Can “gateways” prioritise candidates
 • if correlates & animal models absent or non-predictive … ?
Blueprint for TB vaccine success

doi: 10.1016/S1472-9792(12)70005-7

1. **Creativity** in research and discovery
2. **Correlates** of immunity and biomarkers for TB vaccines
3. **Cooperation**: Clinical trials, harmonization etc.
4. **Rational selection** of TB vaccine candidates
5. **Advocacy**: community acceptance and funding of vaccines within overall public health strategies
Thank You

David JM Lewis MD